scholarly journals High-Performance, Single-Crystal Gold Bowtie Nano-Antennas via Epitaxial Electroless Deposition

Author(s):  
Sasan V. Grayli ◽  
Saeid Kamal ◽  
Gary Leach

Material quality can play a critical role in the performance of nanometer-scale plasmonic structures. Here, we highlight a novel deposition strategy for single-crystal noble metal deposition and provide a direct and quantitative comparison between the fabrication yield, durability, and efficiency of bowtie nano-antennas fabricated from monocrystalline and polycrystalline gold films using subtractive nanofabrication. Focused ion beam milling of monocrystalline Au(100) films deposited through epitaxial electroless deposition to form bowtie nano-antennas produces devices that demonstrate key performance enhancements over devices patterned identically from polycrystalline Au films deposited via physical vapor deposition. Single-crystal bowties reveal significant improvements in pattern transfer fidelity and device yield, the ability to tailor and model local plasmonic field enhancements and marked improvement in their thermal and mechanical stability over those fabricated from polycrystalline Au films. This work underscores the performance advantages of single-crystal nanoscale plasmonic materials and describes a straightforward, solution-phase deposition pathway to achieve them. We anticipate that this approach will be broadly useful in applications where local near-fields can enhance light−matter interactions, including for the fabrication of optical sensors, photocatalytic structures, hot carrier-based devices, and nanostructured noble metal architectures targeting nano-attophysics.

2019 ◽  
Author(s):  
Sasan V. Grayli ◽  
Xin Zhang ◽  
Dmitry Star ◽  
Gary Leach

Size, shape and crystallinity play a critical role in the wavelength-dependent optical responses and plasmonic local near-field distributions of metallic nanostructures. While their enhanced local fields can drive new and useful chemical and physical processes, the ability to fabricate shape-controlled single-crystal metal nanostructures and position them precisely on substrates for device applications represents a significant barrier to harnessing their greater potential. Here, we describe a novel electroless deposition process in the presence of anionic additives that yields additive-specific, shape-controlled, single-crystal plasmonic Au nanostructures on Ag(100) and Au(100) substrates. Deposition of Au in the presence of SO<sub>4</sub><sup>2-</sup> ions results in the formation of smooth Au(111)-faceted square pyramids that show large surface enhanced Raman responses. The use of halide additives such as Cl<sup>-</sup> and Br<sup>- </sup>that interact strongly with (100) facets produces highly textured hillock-type structures characterized by edge and screw-type dislocations (Cl<sup>-</sup>), or flat platelet-like features characterized by large area Au(100) terraces with (110) step edges (Br<sup>-</sup>). Use of additive combinations provides structures that comprise characteristics derived from each additive including new square pyramidal structures with dominant Au(110) facets (SO<sub>4</sub><sup>2-</sup>and Br<sup>-</sup>). Finally we demonstrate that this bottom-up electroless deposition process, when combined with top-down lithographic patterning methods, can be used to position shape-controlled, single-crystal Au nanostructures with precise location and orientation on surfaces. We anticipate that this approach will be employed as a powerful new tool to tune the plasmonic characteristics of nanostructures and facilitate their broader integration into device applications.


2011 ◽  
Vol 83 (11) ◽  
pp. 1971-1980 ◽  
Author(s):  
Mohammad Nur-E-Alam ◽  
Mikhail Vasiliev ◽  
Kamal Alameh ◽  
Viacheslav Kotov

Bi-substituted iron garnet (Bi:IG) compounds synthesized in thin film form are the best semi-transparent magneto-optical (MO) materials for applications in magnetic recording, optical sensors, and photonics. These materials can possess attractive magnetic properties and the highest specific Faraday rotation in the visible and near-infrared spectral regions, if the deposited layers contain a high volumetric fraction of the garnet phase and possess high-quality surfaces and microstructure. In this paper, we study the effects of various deposition and annealing process parameters on the properties of Bi:IG and garnet-oxide nanocomposite films of several composition types fabricated using radio-frequency (RF) sputtering deposition followed by high-temperature isothermal crystallization. We also investigate the kinetics of garnet phase formation within a garnet-Bi-oxide nanocomposite material.


2019 ◽  
Author(s):  
Sasan V. Grayli ◽  
Xin Zhang ◽  
Dmitry Star ◽  
Gary Leach

Size, shape and crystallinity play a critical role in the wavelength-dependent optical responses and plasmonic local near-field distributions of metallic nanostructures. While their enhanced local fields can drive new and useful chemical and physical processes, the ability to fabricate shape-controlled single-crystal metal nanostructures and position them precisely on substrates for device applications represents a significant barrier to harnessing their greater potential. Here, we describe a novel electroless deposition process in the presence of anionic additives that yields additive-specific, shape-controlled, single-crystal plasmonic Au nanostructures on Ag(100) and Au(100) substrates. Deposition of Au in the presence of SO<sub>4</sub><sup>2-</sup> ions results in the formation of smooth Au(111)-faceted square pyramids that show large surface enhanced Raman responses. The use of halide additives such as Cl<sup>-</sup> and Br<sup>- </sup>that interact strongly with (100) facets produces highly textured hillock-type structures characterized by edge and screw-type dislocations (Cl<sup>-</sup>), or flat platelet-like features characterized by large area Au(100) terraces with (110) step edges (Br<sup>-</sup>). Use of additive combinations provides structures that comprise characteristics derived from each additive including new square pyramidal structures with dominant Au(110) facets (SO<sub>4</sub><sup>2-</sup>and Br<sup>-</sup>). Finally we demonstrate that this bottom-up electroless deposition process, when combined with top-down lithographic patterning methods, can be used to position shape-controlled, single-crystal Au nanostructures with precise location and orientation on surfaces. We anticipate that this approach will be employed as a powerful new tool to tune the plasmonic characteristics of nanostructures and facilitate their broader integration into device applications.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 959
Author(s):  
Cataldo Simari ◽  
Mario Prejanò ◽  
Ernestino Lufrano ◽  
Emilia Sicilia ◽  
Isabella Nicotera

Sulfonated Polysulfone (sPSU) is emerging as a concrete alternative to Nafion ionomer for the development of proton exchange electrolytic membranes for low cost, environmentally friendly and high-performance PEM fuel cells. This ionomer has recently gained great consideration since it can effectively combine large availability on the market, excellent film-forming ability and remarkable thermo-mechanical resistance with interesting proton conductive properties. Despite the great potential, however, the morphological architecture of hydrated sPSU is still unknown. In this study, computational and experimental advanced tools are combined to preliminary describe the relationship between the microstructure of highly sulfonated sPSU (DS = 80%) and its physico-chemical, mechanical and electrochemical features. Computer simulations allowed for describing the architecture and to estimate the structural parameters of the sPSU membrane. Molecular dynamics revealed an interconnected lamellar-like structure for hydrated sPSU, with ionic clusters of about 14–18 Å in diameter corresponding to the hydrophilic sulfonic-acid-containing phase. Water dynamics were investigated by 1H Pulsed Field Gradient (PFG) NMR spectroscopy in a wide temperature range (20–120 °C) and the self-diffusion coefficients data were analyzed by a “two-sites” model. It allows to estimate the hydration number in excellent agreement with the theoretical simulation (e.g., about 8 mol H2O/mol SO3− @ 80 °C). The PEM performance was assessed in terms of dimensional, thermo-mechanical and electrochemical properties by swelling tests, DMA and EIS, respectively. The peculiar microstructure of sPSU provides a wider thermo-mechanical stability in comparison to Nafion, but lower dimensional and conductive features. Nonetheless, the single H2/O2 fuel cell assembled with sPSU exhibited better features than any earlier published hydrocarbon ionomers, thus opening interesting perspectives toward the design and preparation of high-performing sPSU-based PEMs.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shan Wang ◽  
Aolin Lu ◽  
Chuan-Jian Zhong

AbstractAs a promising substitute for fossil fuels, hydrogen has emerged as a clean and renewable energy. A key challenge is the efficient production of hydrogen to meet the commercial-scale demand of hydrogen. Water splitting electrolysis is a promising pathway to achieve the efficient hydrogen production in terms of energy conversion and storage in which catalysis or electrocatalysis plays a critical role. The development of active, stable, and low-cost catalysts or electrocatalysts is an essential prerequisite for achieving the desired electrocatalytic hydrogen production from water splitting for practical use, which constitutes the central focus of this review. It will start with an introduction of the water splitting performance evaluation of various electrocatalysts in terms of activity, stability, and efficiency. This will be followed by outlining current knowledge on the two half-cell reactions, hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), in terms of reaction mechanisms in alkaline and acidic media. Recent advances in the design and preparation of nanostructured noble-metal and non-noble metal-based electrocatalysts will be discussed. New strategies and insights in exploring the synergistic structure, morphology, composition, and active sites of the nanostructured electrocatalysts for increasing the electrocatalytic activity and stability in HER and OER will be highlighted. Finally, future challenges and perspectives in the design of active and robust electrocatalysts for HER and OER towards efficient production of hydrogen from water splitting electrolysis will also be outlined.


2021 ◽  
Vol 7 (3) ◽  
pp. eabd6978 ◽  
Author(s):  
Jingxin Zhao ◽  
Hongyu Lu ◽  
Yan Zhang ◽  
Shixiong Yu ◽  
Oleksandr I. Malyi ◽  
...  

Coaxial fiber-shaped supercapacitors with short charge carrier diffusion paths are highly desirable as high-performance energy storage devices for wearable electronics. However, the traditional approaches based on the multistep fabrication processes for constructing the fiber-shaped energy device still encounter persistent restrictions in fabrication procedure, scalability, and mechanical durability. To overcome this critical challenge, an all-in-one coaxial fiber-shaped asymmetric supercapacitor (FASC) device is realized by a direct coherent multi-ink writing three-dimensional printing technology via designing the internal structure of the coaxial needles and regulating the rheological property and the feed rates of the multi-ink. Benefitting from the compact coaxial structure, the FASC device delivers a superior areal energy/power density at a high mass loading, and outstanding mechanical stability. As a conceptual exhibition for system integration, the FASC device is integrated with mechanical units and pressure sensor to realize high-performance self-powered mechanical devices and monitoring systems, respectively.


Sign in / Sign up

Export Citation Format

Share Document