scholarly journals Carbodiphosphorane-Catalyzed Hydroboration of Ketones and Imines

Author(s):  
Cara Aversa-Fleener ◽  
Daniel Chang ◽  
Allegra Liberman-Martin

We report the use of a cyclic carbodiphosphorane catalyst for ketone and imine hydroboration reactions. To our knowledge, this represents the first use of a carbodiphosphorane as an organocatalyst. The carbodiphospohorane shows superior catalytic activity compared to other neutral carbon nucleophiles tested.

Author(s):  
J. C. Wheatley ◽  
J. M. Cowley

Rare-earth phosphates are of particular interest because of their catalytic properties associated with the hydrolysis of many aromatic chlorides in the petroleum industry. Lanthanum phosphates (LaPO4) which have been doped with small amounts of copper have shown increased catalytic activity (1). However the physical and chemical characteristics of the samples leading to good catalytic activity are not known.Many catalysts are amorphous and thus do not easily lend themselves to methods of investigation which would include electron microscopy. However, the LaPO4, crystals are quite suitable samples for high resolution techniques.The samples used were obtained from William L. Kehl of Gulf Research and Development Company. The electron microscopy was carried out on a JEOL JEM-100B which had been modified for high resolution microscopy (2). Standard high resolution techniques were employed. Three different sample types were observed: 669A-1-5-7 (poor catalyst), H-L-2 (good catalyst) and 27-011 (good catalyst).


2019 ◽  
Vol 9 (3) ◽  
pp. 811-821 ◽  
Author(s):  
Zhao-Meng Wang ◽  
Li-Juan Liu ◽  
Bo Xiang ◽  
Yue Wang ◽  
Ya-Jing Lyu ◽  
...  

The catalytic activity decreases as –(SiO)3Mo(OH)(O) > –(SiO)2Mo(O)2 > –(O)4–MoO.


1995 ◽  
Vol 74 (03) ◽  
pp. 958-961 ◽  
Author(s):  
Raelene L Kinlough-Rathbone ◽  
Dennis W Perry

SummaryPlatelets are exposed to thrombin when they take part in arterial thrombus formation, and they may return to the circulation when they are freed by fibrinolysis and dislodged by flowing blood. Thrombin causes the expression of procoagulant activity on platelets, and if this activity persists, the recirculating platelets may contribute to subsequent thrombosis. We have developed techniques to degranulate human platelets by treatment with thrombin, and recover them as single, discrete platelets that aggregate in response to both weak and strong agonists. In the present study we examined the duration of procoagulant activity on the surface of thrombin-degranulated platelets by two methods: a prothrombinase assay, and the binding of 125I-labeled annexin. Control platelets generated 0.9 ± 0.4 U thrombin per 107 platelets in 15 min. Suspensions of thrombin-degranulated platelets formed 5.4 ± 0.1 U thrombin per 107 platelets in this time. Binding of 125I-annexin V was also greater with thrombin-treated platelets than with control platelets (controls: 1.7 ±0.1 ng annexin/107 platelets; thrombin-degranulated platelets: 6.8 ± 0.2 ng annexin/107 platelets). With thrombin-degranulated platelets, increased procoagulant activity and annexin binding persisted for at least 4 h after degranulation and resuspension, indicating that the catalytic activity for the prothrombinase complex is not reversed during this time. These platelets maintained their ability to aggregate for 4 h, even in response to the weak agonist, ADP. Thus, platelets that have taken part in thrombus formation and returned to the circulation may contribute to the promotion of further thrombotic events because of the persistence of procoagulant activity on their surface.


Synlett ◽  
1991 ◽  
Vol 1991 (09) ◽  
pp. 697-698 ◽  
Author(s):  
Tadakatsu Mandai ◽  
Hiroaki Kunitomi ◽  
Kiyoto Higashi ◽  
Mikio Kawada ◽  
Jiro Tsuji

MRS Advances ◽  
2020 ◽  
Vol 5 (57-58) ◽  
pp. 2961-2972
Author(s):  
P.C. Meléndez-González ◽  
E. Garza-Duran ◽  
J.C. Martínez-Loyola ◽  
P. Quintana-Owen ◽  
I.L. Alonso-Lemus ◽  
...  

In this work, low-Pt content nanocatalysts (≈ 5 wt. %) supported on Hollow Carbon Spheres (HCS) were synthesized by two routes: i) colloidal conventional polyol, and ii) surfactant-free Bromide Anion Exchange (BAE). The nanocatalysts were labelled as Pt/HCS-P and Pt/HCS-B for polyol and BAE, respectively. The physicochemical characterization of the nanocatalysts showed that by following both methods, a good control of chemical composition was achieved, obtaining in addition well dispersed nanoparticles of less than 3 nm TEM average particle size (d) on the HCS. Pt/HCS-B contained more Pt0 species than Pt/HCS-P, an effect of the synthesis method. In addition, the structure of the HCS remains more ordered after BAE synthesis, compared to polyol. Regarding the catalytic activity for the Oxygen Reduction Reaction (ORR) in 0.5 M KOH, Pt/HCS-P and Pt/HCS-B showed a similar performance in terms of current density (j) at 0.9 V vs. RHE than the benchmark commercial 20 wt. % Pt/C. However, Pt/HCS-P and Pt/HCS-B demonstrated a 6 and 5-fold increase in mass catalytic activity compared to Pt/C, respectively. A positive effect of the high specific surface area of the HCS and its interactions with metal nanoparticles and electrolyte, which promoted the mass transfer, increased the performance of Pt/HCS-P and Pt/HCS-B. The high catalytic activity showed by Pt/HCS-B and Pt/HCS-P for the ORR, even with a low-Pt content, make them promising cathode nanocatalysts for Anion Exchange Membrane Fuel Cells (AEMFC).


2016 ◽  
Vol 10 (3) ◽  
pp. 259-270
Author(s):  
Ludmila Matienko ◽  
◽  
Larisa Mosolova ◽  
Vladimir Binyukov ◽  
Gennady Zaikov ◽  
...  

Mechanism of catalysis with binary and triple catalytic systems based on redox inactive metal (lithium) compound {LiSt+L2} and {LiSt+L2+PhOH} (L2=DMF or HMPA), in the selective ethylbenzene oxidation by dioxygen into -phenylethyl hydroperoxide is researched. The results are compared with catalysis by nickel-lithium triple system {NiII(acac)2+LiSt+PhOH} in selective ethylbenzene oxidation to PEH. The role of H-bonding in mechanism of catalysis is discussed. The possibility of the stable supramolecular nanostructures formation on the basis of triple systems, {LiSt+L2+PhOH}, due to intermolecular H-bonds, is researched with the AFM method.


2019 ◽  
Author(s):  
Leiyang Lv ◽  
Dianhu Zhu ◽  
Zihang Qiu ◽  
Jianbin Li ◽  
Chao-Jun Li

Hydroalkylation of unsaturated hydrocarbons with unstablized carbon nucleophiles is difficult and remains a major challenge. The disclosed examples so far mainly focused on the involvement of heteroatom and/or stabilized carbon nucleophiles as efficient reaction partners. Reported here is an unprecedented regioselective nickel-catalyzed hydroalkylation of 1,3-dienes with hydrazones, generated in situ from abundant aryl aldehydes and ketones and acted as both the sources of unstabilized carbanions and hydride. With this strategy, both terminal and sterically hindered internal dienes are hydroalkylated efficiently in a highly selective manner, thus providing a novel and reliable catalytic method to construct challenging C(sp3)-C(sp3) bonds.


2019 ◽  
Author(s):  
Du Sun ◽  
yunfei wang ◽  
Kenneth Livi ◽  
chuhong wang ◽  
ruichun luo ◽  
...  

<div> <p>The synthesis of alloys with long range atomic scale ordering (ordered intermetallics) is an emerging field of nanochemistry. Ordered intermetallic nanoparticles are useful for a wide variety of applications such as catalysis, superconductors, and magnetic devices. However, the preparation of nanostructured ordered intermetallics is challenging in comparison to disordered alloys, hindering progress in materials development. We report a process for converting colloidally synthesized ordered intermetallic PdBi<sub>2</sub> to ordered intermetallic Pd<sub>3</sub>Bi nanoparticles under ambient conditions by an electrochemically induced phase transition. The low melting point of PdBi<sub>2</sub> corresponds to low vacancy formation energies which enables the facile removal of the Bi from the surface, while simultaneously enabling interdiffusion of the constituent atoms via a vacancy diffusion mechanism under ambient conditions. The resulting phase-converted ordered intermetallic Pd<sub>3</sub>Bi exhibits 11x and 3.5x higher mass activty and high methanol tolerance for the oxygen reduction reaction compared to Pt/C and Pd/C, respectively,which is the highest reported for a Pd-based catalyst, to the best of our knowledge. These results establish a key development in the synthesis of noble metal rich ordered intermetallic phases with high catalytic activity, and sets forth guidelines for the design of ordered intermetallic compounds under ambient conditions.</p> </div>


2019 ◽  
Author(s):  
Huifang Xu ◽  
Weinan Liang ◽  
Linlin Ning ◽  
Yuanyuan Jiang ◽  
Wenxia Yang ◽  
...  

P450 fatty acid decarboxylases (FADCs) have recently been attracting considerable attention owing to their one-step direct production of industrially important 1-alkenes from biologically abundant feedstock free fatty acids under mild conditions. However, attempts to improve the catalytic activity of FADCs have met with little success. Protein engineering has been limited to selected residues and small mutant libraries due to lack of an effective high-throughput screening (HTS) method. Here, we devise a catalase-deficient <i>Escherichia coli</i> host strain and report an HTS approach based on colorimetric detection of H<sub>2</sub>O<sub>2</sub>-consumption activity of FADCs. Directed evolution enabled by this method has led to effective identification for the first time of improved FADC variants for medium-chain 1-alkene production from both DNA shuffling and random mutagenesis libraries. Advantageously, this screening method can be extended to other enzymes that stoichiometrically utilize H<sub>2</sub>O<sub>2</sub> as co-substrate.


Sign in / Sign up

Export Citation Format

Share Document