scholarly journals INHIBITORY EFFECT OF CRUDE EXTRACTS DERIVED FROM AROMATIC PLANTS AGAINST WHITE MOLD OF BRASSICA JUNCEA VAR. TUMIDA

2019 ◽  
Vol 31 (1) ◽  
pp. 35-46
Author(s):  
Seyedmohammadreza Ojaghian ◽  
Meisam Saremi ◽  
Saeid Pashaei

The objective of this study was to evaluate antifungal activity and resistance inducing potential of crude extracts derived from neem (Azadirachta indica) and ginger (Zingiber officinale) against three isolates of Sclerotinia sclerotiorum, the causal agent of mustard white mold under in vitro and in vivo conditions. In addition, enzymatic tests were carried out to assess the effect of crude extracts on activities of resistance-inducing enzymes in mustard leaves. The results showed that ethanol extracts of neem and ginger at concentration 2 g/l were able to reduce mycelial growth of the pathogen (isolate 3) by 61.5 and 44.3%, respectively. The ethanol extracts of neem and ginger at concentration 2 g/l reduced infection radius on plant leaves from 9.7 in control to 3.1 and 3.4, respectively, due to antifungal efficacy. In addition, ethanol extracts of neem and ginger at concentration 2 g/l decreased infection radius (isolate 1) on plant leaves from 9.5 in control to 2.1 and 2.3, respectively, seven days after application. Enzymatic analyses showed significant increase in level of chitinases, β-1,3-glucanase, Phenylalanine ammonia lyase and Peroxidase due to application of ethanol extracts of neem and ginger.

2008 ◽  
Vol 2 (1) ◽  
pp. 12-18
Author(s):  
Assma Gatta ◽  
Luaay K. Al – ani ◽  
Nabeel Al - ani

Tissue culture were established from leaf and stem of china berry (Melia azedarach ) tree . Using MS media the best regulator to form callus were 6mg/l BAP, all other concentrations did not give callus . The crude extracts from leaves and callus established from leaves were extracted with water and ethanol with different concentrations. In ethanol extracts the least concentration 0.0001 half of the treated parasites were killed in 24 hours while the number increase as the concentration increase . However in callus the ethanol extracts were much higher about 8.5 were killed in the above concentration . In water extracts the least concentration 0.0001 killed half of the treated parasites in 24 hours .This number was increased 8 or 9 in 48 and 72 hours respectively . These results give us preliminary idea about the biological control of this dangerous parasite.


1994 ◽  
Vol 49 (11-12) ◽  
pp. 781-790 ◽  
Author(s):  
Gerhard Leubner Metzger ◽  
Nikolaus Amrhein

(1-Amino-2-phenylethyl)phosphonic acid (APEP), (1-amino-2-phenylethyl)phosphonous acid (APEPi), α-aminooxy-β-phenylpropionic acid (AOPP) and several other phenylalanine analogues are potent inhibitors of (S)-phenylalanine ammonia-lyase (PAL) in vitro and in vivo. The ability of these compounds to inhibit (S)-phenylalanine-tRNA synthetases (PRSs) from wheat germ, soybean, and baker’s yeast has been investigated and compared to the inhibition of PAL. APEP and APEPi were found to inhibit the tRNAphe-aminoacylation reactions catalyzed by the three PRSs studied in vitro in a competitive manner with respect to (5)-phenylalanine. (R)-APEP inhibits the PRSs with apparent Ki values of 144 μᴍ for wheat germ (app. Km for (S)-phe 5.2 μᴍ) , 130 μᴍ for soybean (app. Km for (S)-phe 0.9 μᴍ) , and 1096 μᴍ for baker’s yeast (app. Km for (S)-phe 5.5 μᴍ ) . The apparent Ki values for (R)-APEPi are 315 μᴍ , 160 μᴍ , and 117 μᴍ , respectively. APEP and APEPi inhibit the ATPpyrophosphate exchange reactions catalyzed by the PRSs from wheat germ and baker’s yeast, but they are not activated and do not serve as substrates in these reactions. AOPP has no affinity to any of the three PRSs, whereas it is a potent inhibitor of PAL. In light of our in vitro results with PRSs from different sources it appears unlikely that the PAL inhibitors we have studied have any significant inhibitory effect on this essential step in protein synthesis in vivo.


2021 ◽  
Vol 21 (3) ◽  
pp. 219
Author(s):  
Syamsudin Abdillah ◽  
Apriala Gita Lestari ◽  
Priskila Monika ◽  
Wahono Sumaryono ◽  
Kartiningsih Hisyam

This study aims to prepare polyherbal formulations and also analyze the antidiabetic potentials of the prepared polyherbal in animals. The ethanol extracts of the leaves of <em>Smallanthus sonchifolius</em>, <em>Stevia rebaudiana, Syzygium polyanthum</em>, and <em>Camellia sinensis</em> were used in this study. The extracts of the aforementioned plants were prepared in the ratio of 2:1:1:1. The formulation was tested for antidiabetic activity <em>in vitro</em> through the inhibition of alpha-glucosidase and <em>in vivo</em> using alloxan-induced diabetes in mice. The polyherbal has an inhibitory effect with the IC<sub>50</sub> value of 26.23 μg/mL compared to acarbose (control) was 17.02 μg/mL. The diabetic animals were observed to show an obvious decline in glucose level when compared with control (P&lt; 0.001) after treatment.


2019 ◽  
Vol 13 (1) ◽  
pp. 156-161
Author(s):  
Sabah R. Mohammed ◽  
Elsayed M. Zeitar ◽  
Ivan D. Eskov

Objective: Evaluate the antifungal effect of chitosan against Rhizoctonia solani in vitro and the possible mechanisms of its induced activity in potato tubers to control black scurf disease. Methods: The in vitro influence of chitosan at different concentrations on mycelial growth of R. solani was tested by using the poisoned food technique in PDA medium. The effect of these concentrations on the development of lesion diameters in tubers inoculated with R. solani mycelium was assayed for 30 days. The concentration that showed the greatest inhibitory effect on lesion diameters was tested to assess the induced activity of defense-related enzymes in the infected tubers. Results: In the poisoned food technique, chitosan at 1% completely inhibited the growth of R. solani mycelium. In vivo tests showed that chitosan treatment at 0.5% effectively controlled the black scurf in tubers inoculated with R. solani mycelium. Chitosan increased the activities of defense-related enzymes such as Peroxidase (POD), Polyphenol Oxidase (PPO) and Phenylalanine Ammonia-lyase (PAL) in treated tubers of tested cultivars. Conclusion: This work demonstrated that chitosan directly inhibited the growth of R. solani, and potentially elicited defense reaction in potato tubers.


Author(s):  
Soundararajan Muthukrishnan ◽  
Sivakkumar T

 Objective: The aim of this research is to establish the antidiabetic properties of sequential extracts of Schleichera oleosa (lour) Oken leaves thru α-amylase and α-glucosidase inhibitory assay.Methods: The extracts of S. oleosa (Lour) Oken were prepared by continuous hot percolating the dried powder of the plant leaves. The various solvents were used for the extraction and qualitative assay for the phytochemical test using standard protocols. Different concentration (1, 2, 4, 6, 12, 25, and 50 mg/ml) of sequential extracts of S. oleosa leaves were used to assess the in vitro α-amylase and α-glucosidase inhibitory assay by Bernfeld and Apostolidis method.Results: In the α-amylase assay, the ethanolic extract produced 52.76% inhibition at 4 mg/ml concentration, but in ethyl acetate and aqueous extracts case 50% inhibition attained only at the concentration of 50 mg/ml, and acarbose 0.9 mg/ml was found 89.24% inhibition. In the α-glucosidase assay, the all extracts show the decent inhibitory effect in 50 mg/ml. The ethanolic and aqueous extracts exhibited a higher inhibitory effect 72.64% and 59.44% than other extracts at the concentration of 50 mg/ml, respectively, while acarbose 0.9 mg/ml was producing 86.24% inhibition. This result indicates that the inhibition of ethanolic and aqueous extracts on the activity from α-amylase and α-glucosidases is much more potent than that of other extracts.Conclusion: This study revealed that ethanolic and aqueous extracts showed the high content of polyphenols and flavonoids, which was blamed for the α-amylase and α-glucosidases inhibition. Hence, it deserved to elucidate specific components and to evaluate the antidiabetic effect using in vivo animal model.


1973 ◽  
Vol 30 (02) ◽  
pp. 315-326
Author(s):  
J. Heinz Joist ◽  
Jean-Pierre Cazenave ◽  
J. Fraser Mustard

SummarySodium pentobarbital (SPB) and three other barbituric acid derivatives were found to inhibit platelet function in vitro. SPB had no effect on the primary response to ADP of platelets in platelet-rich plasma (PRP) or washed platelets but inhibited secondary aggregation induced by ADP in human PRP. The drug inhibited both phases of aggregation induced by epinephrine. SPB suppressed aggregation and the release reaction induced by collagen or low concentrations of thrombin, and platelet adherence to collagen-coated glass tubes. The inhibition by SPB of platelet aggregation was readily reversible and isotopically labeled SPB did not become firmly bound to platelets. No inhibitory effect on platelet aggregation induced by ADP, collagen, or thrombin could be detected in PRP obtained from rabbits after induction of SPB-anesthesia.


1976 ◽  
Vol 36 (02) ◽  
pp. 401-410 ◽  
Author(s):  
Buichi Fujttani ◽  
Toshimichi Tsuboi ◽  
Kazuko Takeno ◽  
Kouichi Yoshida ◽  
Masanao Shimizu

SummaryThe differences among human, rabbit and guinea-pig platelet adhesiveness as for inhibitions by adenosine, dipyridamole, chlorpromazine and acetylsalicylic acid are described, and the influence of measurement conditions on platelet adhesiveness is also reported. Platelet adhesiveness of human and animal species decreased with an increase of heparin concentrations and an increase of flow rate of blood passing through a glass bead column. Human and rabbit platelet adhesiveness was inhibited in vitro by adenosine, dipyridamole and chlorpromazine, but not by acetylsalicylic acid. On the other hand, guinea-pig platelet adhesiveness was inhibited by the four drugs including acetylsalicylic acid. In in vivo study, adenosine, dipyridamole and chlorpromazine inhibited platelet adhesiveness in rabbits and guinea-pigs. Acetylsalicylic acid showed the inhibitory effect in guinea-pigs, but not in rabbits.


2018 ◽  
Vol 15 (6) ◽  
pp. 531-543 ◽  
Author(s):  
Dominik Szwajgier ◽  
Ewa Baranowska-Wojcik ◽  
Kamila Borowiec

Numerous authors have provided evidence regarding the beneficial effects of phenolic acids and their derivatives against Alzheimer's disease (AD). In this review, the role of phenolic acids as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) is discussed, including the structure-activity relationship. In addition, the inhibitory effect of phenolic acids on the formation of amyloid β-peptide (Aβ) fibrils is presented. We also cover the in vitro, ex vivo, and in vivo studies concerning the prevention and treatment of the cognitive enhancement.


Sign in / Sign up

Export Citation Format

Share Document