scholarly journals Adapting the Scar-in-a-Jar to Skin Fibrosis and Screening Traditional and Contemporary Anti-Fibrotic Therapies

Author(s):  
João Q. Coentro ◽  
Ulrike May ◽  
Stuart Prince ◽  
John Zwaagstra ◽  
Olli Ritvos ◽  
...  

Skin fibrosis still constitutes an unmet clinical need. Although pharmacological strategies are at the forefront of scientific and technological research and innovation, their clinical translation is hindered by the poor predictive capacity of the currently available in vitro fibrosis models. Indeed, customarily utilised in vitro scarring models are conducted in a low extracellular matrix milieu, which constitutes an oxymoron for the in-hand pathophysiology. Herein, we coupled macromolecular crowding (enhances and accelerates extracellular matrix deposition) with transforming growth factor β1 (TGFβ1; induces trans-differentiation of fibroblasts to myofibroblasts) in human dermal fibroblast cultures to develop a skin fibrosis in vitro model and to screen a range of anti-fibrotic families (corticosteroids, inhibitors of histone deacetylases, inhibitors of collagen crosslinking, inhibitors of TGFβ1 and pleiotropic inhibitors of fibrotic activation). Data obtained demonstrated that macromolecular crowding combined with TGFβ1 significantly enhanced collagen deposition and myofibroblast transformation. Among the anti-fibrotic compounds assessed, trichostatin A (inhibitors of histone deacetylases); serelaxin and pirfenidone (pleiotropic inhibitors of fibrotic activation); and soluble TGFβ receptor trap (inhibitor of TGFβ signalling) resulted in the highest decrease of collagen type I deposition (even higher than triamcinolone acetonide, the gold standard in clinical practice). This study further advocates the potential of macromolecular crowding in the development of in vitro pathophysiology models.

Endocrinology ◽  
2021 ◽  
Vol 162 (11) ◽  
Author(s):  
Tsai-Der Chuang ◽  
Derek Quintanilla ◽  
Drake Boos ◽  
Omid Khorram

Abstract The objective of this study was to determine the expression and functional role of a long noncoding RNA (lncRNA) MIAT (myocardial infarction–associated transcript) in leiomyoma pathogenesis. Leiomyoma compared with myometrium (n = 66) expressed significantly more MIAT that was independent of race/ethnicity and menstrual cycle phase but dependent on MED12 (mediator complex subunit 12) mutation status. Leiomyomas bearing the MED12 mutation expressed higher levels of MIAT and lower levels of microRNA 29 family (miR-29a, -b, and -c) compared with MED12 wild-type leiomyomas. Using luciferase reporter activity and RNA immunoprecipitation analysis, MIAT was shown to sponge the miR-29 family. In a 3-dimensional spheroid culture system, transient transfection of MIAT siRNA in leiomyoma smooth muscle cell (LSMC) spheroids resulted in upregulation of miR-29 family and downregulation of miR-29 targets, collagen type I (COL1A1), collagen type III (COL3A1), and TGF-β3 (transforming growth factor β-3). Treatment of LSMC spheroids with TGF-β3 induced COL1A1, COL3A1, and MIAT levels, but repressed miR-29 family expression. Knockdown of MIAT in LSMC spheroids blocked the effects of TGF-β3 on the induction of COL1A1 and COL3A1 expression. Collectively, these results underscore the physiological significance of MIAT in extracellular matrix accumulation in leiomyoma.


2019 ◽  
Vol 78 (12) ◽  
pp. 1686-1692 ◽  
Author(s):  
Alexandru-Emil Matei ◽  
Chih-Wei Chen ◽  
Lisa Kiesewetter ◽  
Andrea-Hermina Györfi ◽  
Yi-Nan Li ◽  
...  

ObjectivesFibrosis is a complex pathophysiological process involving interplay between multiple cell types. Experimental modelling of fibrosis is essential for the understanding of its pathogenesis and for testing of putative antifibrotic drugs. However, most current models employ either phylogenetically distant species or rely on human cells cultured in an artificial environment. Here we evaluated the potential of vascularised in vitro human skin equivalents as a novel model of skin fibrosis and a platform for the evaluation of antifibrotic drugs.MethodsSkin equivalents were assembled on a three-dimensional extracellular matrix by sequential seeding of endothelial cells, fibroblasts and keratinocytes. Fibrotic transformation on exposure to transforming growth factor-β (TGFβ) and response to treatment with nintedanib as an established antifibrotic agent were evaluated by quantitative polymerase chain reaction (qPCR), capillary Western immunoassay, immunostaining and histology.ResultsSkin equivalents perfused at a physiological pressure formed a mature, polarised epidermis, a stratified dermis and a functional vessel system. Exposure of these models to TGFβ recapitulated key features of SSc skin with activation of TGFβ pathways, fibroblast to myofibroblast transition, increased release of collagen and excessive deposition of extracellular matrix. Treatment with the antifibrotic agent nintedanib ameliorated this fibrotic transformation.ConclusionOur data provide evidence that vascularised skin equivalents can replicate key features of fibrotic skin and may serve as a platform for evaluation of antifibrotic drugs in a pathophysiologically relevant human setting.


2003 ◽  
Vol 51 (9) ◽  
pp. 1177-1189 ◽  
Author(s):  
Christine V. Whiting ◽  
John F. Tarlton ◽  
Michael Bailey ◽  
Clare L. Morgan ◽  
Paul W. Bland

Transforming growth factor-β (TGF-β) depresses mucosal inflammation and upregulates extracellular matrix (ECM) deposition. We analyzed TGF-β receptors RI and RII as well as ECM components using the CD4+ T-cell-transplanted SCID mouse model of colitis. The principal change in colitis was an increased proportion of TGF-β RII+ mucosal mesenchymal cells, predominantly α-smooth muscle actin (SMA)+ myofibroblasts, co-expressing vimentin and basement membrane proteins, but not type I collagen. TGF-β RII+ SMA− fibroblasts producing type I collagen were also increased, particularly in areas of infiltration and in ulcers. Type IV collagen and laminin were distributed throughout the gut lamina propria in disease but were restricted to the basement membrane in controls. In areas of severe epithelial damage, type IV collagen was lost and increased type I collagen was observed. To examine ECM production by these cells, mucosal mesenchymal cells were isolated. Cultured cells exhibited a similar phenotype and matrix profile to those of in vivo cells. The data suggested that there were at least two populations of mesenchymal cells responsible for ECM synthesis in the mucosa and that ligation of TGF-β receptors on these cells resulted in the disordered and increased ECM production observed in colitic mucosa.


2014 ◽  
Vol 96 ◽  
pp. 1-8 ◽  
Author(s):  
Pramod Kumar ◽  
Abhigyan Satyam ◽  
Diana Gaspar ◽  
Daniela Cigognini ◽  
Clara Sanz-Nogués ◽  
...  

Tissue engineering by self-assembly hypothesises that optimal repair and regeneration can be achieved best by using the cells’ inherent ability to create organs with proficiency still unmatched by currently available scaffold fabrication technologies. However, the prolonged culture time required to develop an implantable device jeopardises clinical translation and commercialisation of such techniques. Herein, we report that macromolecular crowding, a biophysical in vitro microenvironment modulator, dramatically accelerates extracellular matrix deposition in cultured human corneal, lung and dermal fibroblasts and human bone marrow mesenchymal stem cells. In fact, an almost 5 to 30 fold increase in collagen type I deposition was recorded as early as 48 hours in culture, without any negative effect in cell phenotype and function.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 121.2-122
Author(s):  
A. E. Matei ◽  
C. W. Chen ◽  
L. Kiesewetter ◽  
A. H. Györfi ◽  
Y. N. LI ◽  
...  

Background:The complex pathophysiological processes that result in fibrotic tissue remodeling in systemic sclerosis involve interplay between multiple cell types (1). Experimental models of fibrosis are essential to provide a conceptual understanding of the pathogenesis of these diseases and to test antifibrotic drugs. Current models of fibrosis have important limitations: thein vivomodels rely on species that are phylogenetically distant, whereas thein vitromodels are oversimplified cultures of a single cell type in an artificial two-dimensional environment of excessive stiffness, which imposes an unphysiological cell polarization (2).Objectives:Here we evaluated the potential use of vascularized, three-dimensionalin vitrohuman skin equivalents as a novel model of skin fibrosis and a platform for the evaluation of antifibrotic drugs.Methods:Skin equivalents were generated by seeding human endothelial cells, fibroblasts and keratinocytes on a decellularized porcine extracellular matrix with perfusable vascular structure. The skin models were cultured for one month in a system that ensured perfusion of the vascular network at physiological pressure. Fibrotic transformation induced by TGFβ and response to nintedanib as an established antifibrotic drug was evaluated by capillary Western immunoassays, qPCR, histology and immunostaining.Results:The vascularized human skin equivalents formed the major skin structures relevant for the pathogenesis of fibrosis: a polarized, fully matured epidermis, a stratified dermis and a perfused vessel system with small capillaries. Exposure to TGFβ led to the fibrotic transformation of the skin equivalents, with activated TGFβ downstream pathways, increased fibroblast-to-myofibroblast transition and excessive deposition of extracellular matrix. Treatment of models exposed to TGFβ with nintedanib (a drug with proven antifibrotic effects) ameliorated the fibrotic transformation of skin equivalents with reduced TGFβ signaling, fibroblast-to-myofibroblast transition and decreased extracellular matrix deposition.Conclusion:Here we describe a novelin vitromodel of skin fibrosis. Our data show that vascularized skin equivalents can reproduce all skin layers affected by fibrosis, that, upon exposure to TGFβ, these models recapitulate key features of fibrotic skin and that these skin models can be used as a platform for evaluation of antifibrotic drugs in a setting with high relevance for human disease.References:[1]Distler JHW, Gyorfi AH, Ramanujam M, Whitfield ML, Konigshoff M, Lafyatis R. Shared and distinct mechanisms of fibrosis. Nature reviews Rheumatology. 2019;15(12):705-30.[2]Garrett SM, Baker Frost D, Feghali-Bostwick C. The mighty fibroblast and its utility in scleroderma research. Journal of scleroderma and related disorders. 2017;2(2):69-134.Disclosure of Interests:Alexandru-Emil Matei: None declared, Chih-Wei Chen: None declared, Lisa Kiesewetter: None declared, Andrea-Hermina Györfi: None declared, Yi-Nan Li: None declared, Thuong Trinh-Minh: None declared, Toin van Kuppevelt: None declared, Jan Hansmann: None declared, Astrid Juengel: None declared, Georg Schett Speakers bureau: AbbVie, BMS, Celgene, Janssen, Eli Lilly, Novartis, Roche and UCB, Florian Groeber-Becker: None declared, Jörg Distler Grant/research support from: Boehringer Ingelheim, Consultant of: Boehringer Ingelheim, Paid instructor for: Boehringer Ingelheim, Speakers bureau: Boehringer Ingelheim


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hafiz Muhammad Umer Farooqi ◽  
Bohye Kang ◽  
Muhammad Asad Ullah Khalid ◽  
Abdul Rahim Chethikkattuveli Salih ◽  
Kinam Hyun ◽  
...  

AbstractHepatic fibrosis is a foreshadowing of future adverse events like liver cirrhosis, liver failure, and cancer. Hepatic stellate cell activation is the main event of liver fibrosis, which results in excessive extracellular matrix deposition and hepatic parenchyma's disintegration. Several biochemical and molecular assays have been introduced for in vitro study of the hepatic fibrosis progression. However, they do not forecast real-time events happening to the in vitro models. Trans-epithelial electrical resistance (TEER) is used in cell culture science to measure cell monolayer barrier integrity. Herein, we explored TEER measurement's utility for monitoring fibrosis development in a dynamic cell culture microphysiological system. Immortal HepG2 cells and fibroblasts were co-cultured, and transforming growth factor β1 (TGF-β1) was used as a fibrosis stimulus to create a liver fibrosis-on-chip model. A glass chip-based embedded TEER and reactive oxygen species (ROS) sensors were employed to gauge the effect of TGF-β1 within the microphysiological system, which promotes a positive feedback response in fibrosis development. Furthermore, albumin, Urea, CYP450 measurements, and immunofluorescent microscopy were performed to correlate the following data with embedded sensors responses. We found that chip embedded electrochemical sensors could be used as a potential substitute for conventional end-point assays for studying fibrosis in microphysiological systems.


Sign in / Sign up

Export Citation Format

Share Document