scholarly journals Immune Profiling Reveals Molecular Classification and Characteristic in Urothelial Bladder Cancer

Author(s):  
Li Yang ◽  
Aitian Li ◽  
Fengsen Liu ◽  
Qitai Zhao ◽  
Shaofei Ji ◽  
...  

Urothelial bladder cancer (UBC) is the most common malignant tumor of the urinary system. Most patients do not benefit from treatment with immune checkpoint inhibitors, which are closely associated with immune profiling in the context of UBC. Therefore, we aimed to characterize the immune profile of UBC to identify different immune subtypes that may influence therapy choice. We identified four subtypes of UBC based on immune profiling including immune ignorant, cold tumor, immune inactive, and hot tumor. After excluding the cold tumor subtype because of its unique pathology distinct from the other types, a high correlation between patient survival and immune characteristics was observed. Most immune cell types had highly infiltrated the hot tumor subtype compared to other subtypes. Interestingly, although immune cells infiltrated the tumor microenvironment, they exhibited an exhaustion phenotype. CCL4 may be the key molecule functioning in immune cell infiltration in the hot tumor subtype. Moreover, neutrophils may function as an important suppressor in the tumor microenvironment of the immune ignorant and immune inactive subtypes. Furthermore, different tumor-intrinsic signaling pathways were involved in immune cell infiltration and exclusion in these four different subtypes. Immune profiling could serve as a prognostic biomarker for UBC, and has potential to guide treatment decisions in UBC. Targeting tumor-intrinsic signaling pathways may be a promising strategy to treat UBC.

Author(s):  
Shichao Wang ◽  
Ting Xiang ◽  
Ling Yu ◽  
Junmao Wen ◽  
Fang Liu ◽  
...  

Background: Histone acetylation modification has been found to be correlated the development of renal carcinoma; however, its role in clear cell renal carcinoma (ccRCC) remains to be investigated. Thus, this study aimed to identify the molecular subtypes and establish a relevant score based on histone acetylation modification in ccRCC.Methods: Gene expression and mutation data were retrieved from The Cancer Genome Atlas database. Molecular subtypes were identified by unsupervised clustering based on histone acetylation regulators expression, and the molecular and clinical characteristics including survival, tumor microenvironment, gene set variation, immune cell infiltration, and immune checkpoints in each subtype were investigated. Next, we employed univariate Cox analysis to analyze these genes and established acetylation-related score by lasso regression analysis. Furthermore, we investigated the differences including survival, signaling pathways, mutational landscape, and tumor mutation burden (TMB) between high-risk and low-risk groups. The established score was validated by receiver operating curve and univariate and multivariate Cox regression analyses. We also established a nomogram including acetylation score, age, gender, grade, and stage and verified it by decision curve analysis and calibration plot. The E-MTAB-1980 cohort from the ArrayExpress database was employed as a reference to validate the established score.Results: Thirty-three types of histone acetylation regulators were employed in this study, and two clusters were identified. The two clusters presented significant differences in survival, tumor microenvironment, immune cell infiltration, immune checkpoints, and signaling pathways. Furthermore, an acetylation-related score, composed of six genes (BRD9, HDAC10, KAT2A, KAT5, BRDT, SIRT1, KAT6A, HDAC5), was verified to be significantly associated with prognosis and TMB. Thus, the established scores were successfully verified by the validated cohort, and the nomogram was constructed and successfully validated.Conclusion: The identification of the histone acetylation-related subtypes and score in our study may help reveal the potential relation between histone acetylation and immunity and provide novel insights for the development of individualized therapy for ccRCC.


2022 ◽  
Author(s):  
Yang Bu ◽  
Kejun Liu ◽  
Yiming Niu ◽  
Ji Hao ◽  
Lei Cui ◽  
...  

Abstract Background: Glucose-6-phosphate dehydrogenase (G6PD) plays an important role in the metabolic and immunological aspects of tumors. In hepatocellular carcinoma (HCC), the alteration of tumor microenvironment influences recurrence and metastasis. We extracted G6PD-related data from public databases of HCC tissues and used a bioinformatics approach to explore the correlation between G6PD expression and clinicopathological features and prognosis of immune cell infiltration in HCC.Methods: We extract G6PD expression information from TCGA and GEO databases in liver cancer tissues and normal tissues, validated by immunohistochemistry, and the correlation between G6PD expression and clinical features is analyzed, and the clinical significance of G6PD in liver cancer is assessed by Kaplan-Meier, Cox regression and prognostic line graph models. Functional enrichment analysis is performed by protein-protein interaction (PPI) network, GO/KEGG, GSEA and G6PD-associated differentially expressed genes (DEGs). TIMER and ssGSEA packages are used to assess the correlation between expression and the level of immune cell infiltration.Results: Our results show that G6PD expression is significantly upregulated in hepatocellular carcinoma tissues (P < 0.001). G6PD expression is associated with histological grade, pathological stage, T-stage, vascular infiltration and AFP level (P < 0.05); HCC patients in the low G6PD expression group had longer overall survival and better prognosis compared with the high G6PD expression group (P < 0.05). The level of G6PD expression also affects the levels of macrophages, unactivated dendritic cells, B cells, and follicular helper T cells in the tumor microenvironment.Conclusion: High expression of G6PD is a potential biomarker for poor prognosis of hepatocellular carcinoma, and G6PD may be a target for immunotherapy of HCC.


2020 ◽  
Vol 235 (10) ◽  
pp. 7321-7331 ◽  
Author(s):  
Xiangyang Deng ◽  
Dongdong Lin ◽  
Xiaojia Zhang ◽  
Xuchao Shen ◽  
Zelin Yang ◽  
...  

Author(s):  
Taisheng Liu ◽  
Liyi Guo ◽  
Guihong Liu ◽  
Xiaoshan Hu ◽  
Xiaoning Li ◽  
...  

Background: DNA methylation is an important epigenetic modification, among which 5-methylcytosine methylation (5mC) is generally associated with tumorigenesis. Nonetheless, the potential roles of 5mC regulators in the tumor microenvironment (TME) remain unclear.Methods: The 5mC modification patterns of 1,374 lung adenocarcinoma samples were analyzed systematically. The correlation between the 5mC modification and tumor microenvironment cell infiltration was further assessed. The 5mCscore was developed to evaluate tumor mutation burden, immune check-point inhibitor response, and the clinical prognosis of individual tumors.Results: Three 5mC modification patterns were established based on the clinical characteristics of 21 5mC regulators. According to the differential expression of 5mC regulators, three distinct 5mC gene cluster were also identified, which showed distinct TME immune cell infiltration patterns and clinical prognoses. The 5mCscore was constructed to evaluate the tumor mutation burden, immune check-point inhibitor response, and prognosis characteristics. We found that patients with a low 5mCscore had significant immune cell infiltration and increased clinical benefit.Conclusion: This study indicated that the 5mC modification is involved in regulating TME infiltration remodeling. Targeting 5mC modification regulators might be a novel strategy to treat lung cancer.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xingkui Tang ◽  
Minling Liu ◽  
Xijun Luo ◽  
Mengyuan Zhu ◽  
Shan Huang ◽  
...  

The current study aimed to construct a prognostic predictive model based on tumor microenvironment. CIBERSORT and ESTIMATE algorithms were used to reveal the immune cell infiltration (ICI) landscape of colon cancer. Patients were classified into three clusters by ConsensusClusterPlus algorithm. ICI scores of each patient were determined by principal component analysis. Patients were divided into high and low ICI score groups. Survival, gene expression, and somatic mutation of the two groups were compared. We found that patients with no lymph node invasion, no metastasis, T1–2 disease, and stage I–II had higher ICI scores. Calcium signaling pathway, leukocyte transendothelial migration pathway, MAPK signaling pathway, TGF β pathway, and Wnt signaling pathway were enriched in the high ICI score group. Immune-checkpoint and immune-activity associated genes were decreased in high ICI score patients. Patients in the high ICI score group had better survival. Prognostic value of ICI score was independent of tumor mutational burden (TMB). The ICI score model constructed in the current study may serve as an independent prognostic biomarker in colon cancer.


2020 ◽  
Author(s):  
Biao Huang ◽  
Wei Han ◽  
Zu-Feng Sheng ◽  
Guo-Liang Shen

Abstract Background Skin cutaneous melanoma (SKCM) is known as the most malignancy and treatment-resistant in human tumor, causing about 72% of deaths in skin carcinoma. However, the potential mechanism and new effective targets remain to be further elucidated. Available datasets such as Gene Expression Omnibus (GEO) can be utilized to search for novel therapeutic targets and prognostic biomarkers. Methods Three data sets were downloaded from GEO database . The differentially expressed genes (DEGs) were identified via Venn software. Protein‐protein interaction network of DEGs was developed and the module hub genes analysis was constructed by Cytoscape. Subsequently, multiple online tools and Kaplan-Meier survival curves were analyzed to detect underlying signaling pathways, gene expression, drug-gene interaction and prognostic value of hub genes. In addition, we explored the correlation between hub genes and immune cell infiltration. At last, the related miRNA, lncRNA networks were constructed by R software. Results A total of 308 DEGs and 12 hub genes were identified. Function and pathway enrichment results demonstrated a correlation between DEGs and the tumor microenvironment, immune response and melanoma tumorigenesis. Subsequently, we focused on assessing potential value of 12 hub genes. Seven hub genes ( CCL4, CCL5, NMU, GAL, CXCL9, CXCL10, CXCL13 ) were identified with significant overall survival for prognosis. What’s more, five of these seven hub genes were found to be related to clinical stages (P values<0.05). In addition, the most important pathways of hub genes include interleukin-10 signaling, peptide ligand-binding receptors, which play important roles in tumor microenvironment for immune activation or immunosuppressive by regulating the infiltration of immune cells. Our results revealed a strong positive correlation between gene expression (CCL4, CCL5, CXCL9, CXCL10 and CXCL13) and immune cell infiltration (B-cell, CD8+ T cells, CD4+ T cells, macrophages, Neutrophils, Dendritic cells). Interestingly, 8 of 12 hub genes (CXCL10, CCL4, CCL5, IL6, CXCL2, PTGER3, GAL, NPY1R) were also found in the predicted drug-gene interaction. The related miRNA, lncRNA for diagnosis and prognosis were found in networks. Conclusion In conclusion, CCL4, CCL5, NMU, GAL, CXCL9, CXCL10, CXCL13 were of high prognostic value and may be potential targets for the diagnosis and therapy of patients with melanoma.


Sign in / Sign up

Export Citation Format

Share Document