scholarly journals SNFIMCMDA: Similarity Network Fusion and Inductive Matrix Completion for miRNA–Disease Association Prediction

Author(s):  
Lei Li ◽  
Zhen Gao ◽  
Chun-Hou Zheng ◽  
Yu Wang ◽  
Yu-Tian Wang ◽  
...  

MicroRNAs (miRNAs) that belong to non-coding RNAs are verified to be closely associated with several complicated biological processes and human diseases. In this study, we proposed a novel model that was Similarity Network Fusion and Inductive Matrix Completion for miRNA-Disease Association Prediction (SNFIMCMDA). We applied inductive matrix completion (IMC) method to acquire possible associations between miRNAs and diseases, which also could obtain corresponding correlation scores. IMC was performed based on the verified connections of miRNA–disease, miRNA similarity, and disease similarity. In addition, miRNA similarity and disease similarity were calculated by similarity network fusion, which could masterly integrate multiple data types to obtain target data. We integrated miRNA functional similarity and Gaussian interaction profile kernel similarity by similarity network fusion to obtain miRNA similarity. Similarly, disease similarity was integrated in this way. To indicate the utility and effectiveness of SNFIMCMDA, we both applied global leave-one-out cross-validation and five-fold cross-validation to validate our model. Furthermore, case studies on three significant human diseases were also implemented to prove the effectiveness of SNFIMCMDA. The results demonstrated that SNFIMCMDA was effective for prediction of possible associations of miRNA–disease.

2015 ◽  
Vol 13 (04) ◽  
pp. 1550014 ◽  
Author(s):  
Bo Liao ◽  
Sumei Ding ◽  
Haowen Chen ◽  
Zejun Li ◽  
Lijun Cai

Identifying the microRNA–disease relationship is vital for investigating the pathogenesis of various diseases. However, experimental verification of disease-related microRNAs remains considerable challenge to many researchers, particularly for the fact that numerous new microRNAs are discovered every year. As such, development of computational methods for disease-related microRNA prediction has recently gained eminent attention. In this paper, first, we construct a miRNA functional network and a disease similarity network by integrating different information sources. Then, we further introduce a new diffusion-based method (NDBM) to explore global network similarity for miRNA–disease association inference. Even though known miRNA–disease associations in the database are rare, NDBM still achieves an area under the ROC curve (AUC) of 85.62% in the leave-one-out cross-validation in improving the prediction accuracy of previous methods significantly. Moreover, our method is applicable to diseases with no known related miRNAs as well as new miRNAs with unknown target diseases. Some associations who strongly predicted by our method are confirmed by public databases. These superior performances suggest that NDBM could be an effective and important tool for biomedical research.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Hailin Chen ◽  
Zuping Zhang

Increasing evidence has revealed that microRNAs (miRNAs) play important roles in the development and progression of human diseases. However, efforts made to uncover OMIM disease-miRNA associations are lacking and the majority of diseases in the OMIM database are not associated with any miRNA. Therefore, there is a strong incentive to develop computational methods to detect potential OMIM disease-miRNA associations. In this paper, random walk on OMIM disease similarity network is applied to predict potential OMIM disease-miRNA associations under the assumption that functionally related miRNAs are often associated with phenotypically similar diseases. Our method makes full use of global disease similarity values. We tested our method on 1226 known OMIM disease-miRNA associations in the framework of leave-one-out cross-validation and achieved an area under the ROC curve of 71.42%. Excellent performance enables us to predict a number of new potential OMIM disease-miRNA associations and the newly predicted associations are publicly released to facilitate future studies. Some predicted associations with high ranks were manually checked and were confirmed from the publicly available databases, which was a strong evidence for the practical relevance of our method.


Author(s):  
Xing Chen ◽  
Lian-Gang Sun ◽  
Yan Zhao

Abstract Emerging evidence shows that microRNAs (miRNAs) play a critical role in diverse fundamental and important biological processes associated with human diseases. Inferring potential disease related miRNAs and employing them as the biomarkers or drug targets could contribute to the prevention, diagnosis and treatment of complex human diseases. In view of that traditional biological experiments cost much time and resources, computational models would serve as complementary means to uncover potential miRNA–disease associations. In this study, we proposed a new computational model named Neighborhood Constraint Matrix Completion for MiRNA–Disease Association prediction (NCMCMDA) to predict potential miRNA–disease associations. The main task of NCMCMDA was to recover the missing miRNA–disease associations based on the known miRNA–disease associations and integrated disease (miRNA) similarity. In this model, we innovatively integrated neighborhood constraint with matrix completion, which provided a novel idea of utilizing similarity information to assist the prediction. After the recovery task was transformed into an optimization problem, we solved it with a fast iterative shrinkage-thresholding algorithm. As a result, the AUCs of NCMCMDA in global and local leave-one-out cross validation were 0.9086 and 0.8453, respectively. In 5-fold cross validation, NCMCMDA achieved an average AUC of 0.8942 and standard deviation of 0.0015, which demonstrated NCMCMDA’s superior performance than many previous computational methods. Furthermore, NCMCMDA was applied to three different types of case studies to further evaluate its prediction reliability and accuracy. As a result, 84% (colon neoplasms), 98% (esophageal neoplasms) and 98% (breast neoplasms) of the top 50 predicted miRNAs were verified by recent literature.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Guobo Xie ◽  
Zhiliang Fan ◽  
Yuping Sun ◽  
Cuiming Wu ◽  
Lei Ma

Abstract Background Recently, numerous biological experiments have indicated that microRNAs (miRNAs) play critical roles in exploring the pathogenesis of various human diseases. Since traditional experimental methods for miRNA-disease associations detection are costly and time-consuming, it becomes urgent to design efficient and robust computational techniques for identifying undiscovered interactions. Methods In this paper, we proposed a computation framework named weighted bipartite network projection for miRNA-disease association prediction (WBNPMD). In this method, transfer weights were constructed by combining the known miRNA and disease similarities, and the initial information was properly configured. Then the two-step bipartite network algorithm was implemented to infer potential miRNA-disease associations. Results The proposed WBNPMD was applied to the known miRNA-disease association data, and leave-one-out cross-validation (LOOCV) and fivefold cross-validation were implemented to evaluate the performance of WBNPMD. As a result, our method achieved the AUCs of 0.9321 and $$0.9173 \pm 0.0005$$ 0.9173 ± 0.0005 in LOOCV and fivefold cross-validation, and outperformed other four state-of-the-art methods. We also carried out two kinds of case studies on prostate neoplasm, colorectal neoplasm, and lung neoplasm, and most of the top 50 predicted miRNAs were confirmed to have an association with the corresponding diseases based on dbDeMC, miR2Disease, and HMDD V3.0 databases. Conclusions The experimental results demonstrate that WBNPMD can accurately infer potential miRNA-disease associations. We anticipated that the proposed WBNPMD could serve as a powerful tool for potential miRNA-disease associations excavation.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Yahui Long ◽  
Jiawei Luo

Abstract Background An increasing number of biological and clinical evidences have indicated that the microorganisms significantly get involved in the pathological mechanism of extensive varieties of complex human diseases. Inferring potential related microbes for diseases can not only promote disease prevention, diagnosis and treatment, but also provide valuable information for drug development. Considering that experimental methods are expensive and time-consuming, developing computational methods is an alternative choice. However, most of existing methods are biased towards well-characterized diseases and microbes. Furthermore, existing computational methods are limited in predicting potential microbes for new diseases. Results Here, we developed a novel computational model to predict potential human microbe-disease associations (MDAs) based on Weighted Meta-Graph (WMGHMDA). We first constructed a heterogeneous information network (HIN) by combining the integrated microbe similarity network, the integrated disease similarity network and the known microbe-disease bipartite network. And then, we implemented iteratively pre-designed Weighted Meta-Graph search algorithm on the HIN to uncover possible microbe-disease pairs by cumulating the contribution values of weighted meta-graphs to the pairs as their probability scores. Depending on contribution potential, we described the contribution degree of different types of meta-graphs to a microbe-disease pair with bias rating. Meta-graph with higher bias rating will be assigned greater weight value when calculating probability scores. Conclusions The experimental results showed that WMGHMDA outperformed some state-of-the-art methods with average AUCs of 0.9288, 0.9068 ±0.0031 in global leave-one-out cross validation (LOOCV) and 5-fold cross validation (5-fold CV), respectively. In the case studies, 9, 19, 37 and 10, 20, 45 out of top-10, 20, 50 candidate microbes were manually verified by previous reports for asthma and inflammatory bowel disease (IBD), respectively. Furthermore, three common human diseases (Crohn’s disease, Liver cirrhosis, Type 1 diabetes) were adopted to demonstrate that WMGHMDA could be efficiently applied to make predictions for new diseases. In summary, WMGHMDA has a high potential in predicting microbe-disease associations.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1040 ◽  
Author(s):  
Li Zhang ◽  
Xing Chen ◽  
Jun Yin

The important role of microRNAs (miRNAs) in the formation, development, diagnosis, and treatment of diseases has attracted much attention among researchers recently. In this study, we present an unsupervised deep learning model of the variational autoencoder for MiRNA–disease association prediction (VAEMDA). Through combining the integrated miRNA similarity and the integrated disease similarity with known miRNA–disease associations, respectively, we constructed two spliced matrices. These matrices were applied to train the variational autoencoder (VAE), respectively. The final predicted association scores between miRNAs and diseases were obtained by integrating the scores from the two trained VAE models. Unlike previous models, VAEMDA can avoid noise introduced by the random selection of negative samples and reveal associations between miRNAs and diseases from the perspective of data distribution. Compared with previous methods, VAEMDA obtained higher area under the receiver operating characteristics curves (AUCs) of 0.9118, 0.8652, and 0.9091 ± 0.0065 in global leave-one-out cross validation (LOOCV), local LOOCV, and five-fold cross validation, respectively. Further, the AUCs of VAEMDA were 0.8250 and 0.8237 in global leave-one-disease-out cross validation (LODOCV), and local LODOCV, respectively. In three different types of case studies on three important diseases, the results showed that most of the top 50 potentially associated miRNAs were verified by databases and the literature.


2019 ◽  
Vol 20 (7) ◽  
pp. 1549 ◽  
Author(s):  
Yang Liu ◽  
Xiang Feng ◽  
Haochen Zhao ◽  
Zhanwei Xuan ◽  
Lei Wang

Accumulating studies have shown that long non-coding RNAs (lncRNAs) are involved in many biological processes and play important roles in a variety of complex human diseases. Developing effective computational models to identify potential relationships between lncRNAs and diseases can not only help us understand disease mechanisms at the lncRNA molecular level, but also promote the diagnosis, treatment, prognosis, and prevention of human diseases. For this paper, a network-based model called NBLDA was proposed to discover potential lncRNA–disease associations, in which two novel lncRNA–disease weighted networks were constructed. They were first based on known lncRNA–disease associations and topological similarity of the lncRNA–disease association network, and then an lncRNA–lncRNA weighted matrix and a disease–disease weighted matrix were obtained based on a resource allocation strategy of unequal allocation and unbiased consistence. Finally, a label propagation algorithm was applied to predict associated lncRNAs for the investigated diseases. Moreover, in order to estimate the prediction performance of NBLDA, the framework of leave-one-out cross validation (LOOCV) was implemented on NBLDA, and simulation results showed that NBLDA can achieve reliable areas under the ROC curve (AUCs) of 0.8846, 0.8273, and 0.8075 in three known lncRNA–disease association datasets downloaded from the lncRNADisease database, respectively. Furthermore, in case studies of lung cancer, leukemia, and colorectal cancer, simulation results demonstrated that NBLDA can be a powerful tool for identifying potential lncRNA–disease associations as well.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Da Xu ◽  
Hanxiao Xu ◽  
Yusen Zhang ◽  
Mingyi Wang ◽  
Wei Chen ◽  
...  

Abstract Background Microbes are closely related to human health and diseases. Identification of disease-related microbes is of great significance for revealing the pathological mechanism of human diseases and understanding the interaction mechanisms between microbes and humans, which is also useful for the prevention, diagnosis and treatment of human diseases. Considering the known disease-related microbes are still insufficient, it is necessary to develop effective computational methods and reduce the time and cost of biological experiments. Methods In this work, we developed a novel computational method called MDAKRLS to discover potential microbe-disease associations (MDAs) based on the Kronecker regularized least squares. Specifically, we introduced the Hamming interaction profile similarity to measure the similarities of microbes and diseases besides Gaussian interaction profile kernel similarity. In addition, we introduced the Kronecker product to construct two kinds of Kronecker similarities between microbe-disease pairs. Then, we designed the Kronecker regularized least squares with different Kronecker similarities to obtain prediction scores, respectively, and calculated the final prediction scores by integrating the contributions of different similarities. Results The AUCs value of global leave-one-out cross-validation and 5-fold cross-validation achieved by MDAKRLS were 0.9327 and 0.9023 ± 0.0015, which were significantly higher than five state-of-the-art methods used for comparison. Comparison results demonstrate that MDAKRLS has faster computing speed under two kinds of frameworks. In addition, case studies of inflammatory bowel disease (IBD) and asthma further showed 19 (IBD), 19 (asthma) of the top 20 prediction disease-related microbes could be verified by previously published biological or medical literature. Conclusions All the evaluation results adequately demonstrated that MDAKRLS has an effective and reliable prediction performance. It may be a useful tool to seek disease-related new microbes and help biomedical researchers to carry out follow-up studies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jianlin Wang ◽  
Wenxiu Wang ◽  
Chaokun Yan ◽  
Junwei Luo ◽  
Ge Zhang

Drug repositioning is used to find new uses for existing drugs, effectively shortening the drug research and development cycle and reducing costs and risks. A new model of drug repositioning based on ensemble learning is proposed. This work develops a novel computational drug repositioning approach called CMAF to discover potential drug-disease associations. First, for new drugs and diseases or unknown drug-disease pairs, based on their known neighbor information, an association probability can be obtained by implementing the weighted K nearest known neighbors (WKNKN) method and improving the drug-disease association information. Then, a new drug similarity network and new disease similarity network can be constructed. Three prediction models are applied and ensembled to enable the final association of drug-disease pairs based on improved drug-disease association information and the constructed similarity network. The experimental results demonstrate that the developed approach outperforms recent state-of-the-art prediction models. Case studies further confirm the predictive ability of the proposed method. Our proposed method can effectively improve the prediction results.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yu-Tian Wang ◽  
Lei Li ◽  
Cun-Mei Ji ◽  
Chun-Hou Zheng ◽  
Jian-Cheng Ni

MicroRNAs (miRNAs) are small non-coding RNAs that have been demonstrated to be related to numerous complex human diseases. Considerable studies have suggested that miRNAs affect many complicated bioprocesses. Hence, the investigation of disease-related miRNAs by utilizing computational methods is warranted. In this study, we presented an improved label propagation for miRNA–disease association prediction (ILPMDA) method to observe disease-related miRNAs. First, we utilized similarity kernel fusion to integrate different types of biological information for generating miRNA and disease similarity networks. Second, we applied the weighted k-nearest known neighbor algorithm to update verified miRNA–disease association data. Third, we utilized improved label propagation in disease and miRNA similarity networks to make association prediction. Furthermore, we obtained final prediction scores by adopting an average ensemble method to integrate the two kinds of prediction results. To evaluate the prediction performance of ILPMDA, two types of cross-validation methods and case studies on three significant human diseases were implemented to determine the accuracy and effectiveness of ILPMDA. All results demonstrated that ILPMDA had the ability to discover potential miRNA–disease associations.


Sign in / Sign up

Export Citation Format

Share Document