scholarly journals Dual DNA Transfection Using 1,6-Hexanedithiol-Conjugated Maleimide-Functionalized PU-PEI600 For Gene Correction in a Patient iPSC-Derived Fabry Cardiomyopathy Model

Author(s):  
Chian-Shiu Chien ◽  
Yueh Chien ◽  
Yi-Ying Lin ◽  
Ping-Hsing Tsai ◽  
Shih-Jie Chou ◽  
...  

Non-viral gene delivery holds promises for treating inherited diseases. However, the limited cloning capacity of plasmids may hinder the co-delivery of distinct genes to the transfected cells. Previously, the conjugation of maleimide-functionalized polyurethane grafted with small molecular weight polyethylenimine (PU-PEI600-Mal) using 1,6-hexanedithiol (HDT) could promote the co-delivery and extensive co-expression of two different plasmids in target cells. Herein, we designed HDT-conjugated PU-PEI600-Mal for the simultaneous delivery of CRISPR/Cas9 components to achieve efficient gene correction in the induced pluripotent stem cell (iPSC)-derived model of Fabry cardiomyopathy (FC) harboring GLA IVS4 + 919 G > A mutation. This FC in vitro model recapitulated several clinical FC features, including cardiomyocyte hypertrophy and lysosomal globotriaosylceramide (Gb3) deposition. As evidenced by the expression of two reporter genes, GFP and mCherry, the addition of HDT conjugated two distinct PU-PEI600-Mal/DNA complexes and promoted the co-delivery of sgRNA/Cas9 and homology-directed repair DNA template into target cells to achieve an effective gene correction of IVS4 + 919 G > A mutation. PU-PEI600-Mal/DNA with or without HDT-mediated conjugation consistently showed neither the cytotoxicity nor an adverse effect on cardiac induction of transfected FC-iPSCs. After the gene correction and cardiac induction, disease features, including cardiomyocyte hypertrophy, the mis-regulated gene expressions, and Gb3 deposition, were remarkably rescued in the FC-iPSC-differentiated cardiomyocytes. Collectively, HDT-conjugated PU-PEI600-Mal-mediated dual DNA transfection system can be an ideal approach to improve the concurrent transfection of non-viral-based gene editing system in inherited diseases with specific mutations.

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Michael G Paulus ◽  
Kathrin Renner ◽  
Steffen Pabel ◽  
Gabriela Pietrzyk ◽  
Andreas Luchner ◽  
...  

Introduction: Clinical significance of tachycardiomyopathy (TCM) increased with trials on catheter ablation therapy. Myocardial biopsies from patients show disturbed mitochondrial architecture. Hypothesis: TCM involves mitochondrial dysfunction. Methods: First, TCM was investigated in an animal model: pacemaker implantation in 7 rabbits was followed by tachypacing for 30 days (TCM), 7 animals served as sham-operated controls (SHAM). Second, results of the animal study were evaluated for their translational perspective for human disease using a novel model of induced pluripotent stem cell-derived cardiomyocytes (iPS-CM), derived from 4 healthy donors. IPS-CM were paced with 120 bpm (TACH) or 60 bpm (CTRL) for 7 days in vitro. Targeted transcriptomics, high-resolution respirometry and flow cytometry (MitoSOX Red) were performed. To account for variations between cell differentiations, experiments on iPS-CM were carried out in a paired design. Results: TCM showed LV dilatation and dysfunction (ΔLVEDD +5.3±0.2mm; ΔFS -19±8%; TCM-SHAM; p<0.001). Histological findings resembled human disease entailing cardiomyocyte hypertrophy (CSA 519±32μm 2 vs. 413±21μm 2 , p<0.01) without fibrosis (hydroxyproline content, p=0.52). Mitochondrial transcriptome of TCM was characterized by downregulation of 10 antioxidative enzymes (e.g. GPX3, fold change (FC) 0.4; TCM/SHAM; p<0.05) as well as mitochondrial carriers, including ADP/ATP- and NADH-shuttling (SLC25A4, FC 0.7; SLC25A12, FC 0.8; p<0.01). As transcriptomics implied impaired substrate import, respirometry was performed in whole tissue. In support of our findings on the transcriptome level, mitochondrial oxidative phosphorylation capacity decreased in TCM (133±13 vs. 170±16 pmol·O 2 ·s -1 ·mg -1 ·tissue, p<0.05). Similarly, oxidative phosphorylation was reduced in iPS-CM (995±738 vs. 1838±901 pmolO 2 ·s -1 ·IU -1 citrate synthase activity, TACH vs. CTRL, p<0.01). Concurrently, tachypacing increased mitochondrial superoxide emission in iPS-CM (MFI 491±206 vs. 301±119, p<0.05). Conclusions: Persistent tachycardia alters two mitochondrial key functions in an animal and a novel human ex vivo model: oxidative phosphorylation capacity is reduced, while superoxide emission increases.


2020 ◽  
pp. 1-9
Author(s):  
Jun Zhang ◽  
Zhifu Chen ◽  
Xiaoyan Luo ◽  
Zhoujing Yang

<b><i>Background:</i></b> Inhaled anesthetic sevoflurane (SEVO) may induce cortical neurotoxicity and memory dysfunction in both animals and humans. In this study, we investigated the toxic effects of SEVO on human induced pluripotent stem cell (iPS)-derived neurons. <b><i>Methods:</i></b> Human iPS-derived neurons were exposed to SEVO in vitro. SEVO-induced toxic effects were examined with the viability, live caspase 3/7, and neurite density assays, respectively. The effects of SEVO on the receptors of the tyrosine kinases TrkA, TrkB, and TrkC were assessed by qRT-PCR. TrkA, TrkB, and TrkC were ectopically overexpressed in human iPS-derived neurons. Their functional effects on SEVO-induced human iPS-derived neuron toxicity were further investigated. <b><i>Results:</i></b> SEVO induced dose-dependent cell death, caspase 3/7 elevation, neurite degeneration, and the downregulation of Trk receptors in human iPS-derived neurons. Adenovirus-mediated Trk receptor overexpression selectively upregulated endogenous TrkA, TrkB, or TrkC gene expressions in human iPS-derived neurons. Specifically, TrkC overexpression, but not TrkA or TrkB overexpression was found to overcome the neurotoxic effects of SEVO in human iPS-derived neurons. <b><i>Conclusions:</i></b> SEVO may induce neurotoxicity in human iPS-derived neurons, and its neurotoxic damage could be protected by the overexpression of TrkC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ya Zhang ◽  
Liqun Wang ◽  
Jiaying Zheng ◽  
Liwei Huang ◽  
Shaowen Wang ◽  
...  

Interferon-induced transmembrane proteins (IFITMs) are novel viral restriction factors which inhibit numerous virus infections by impeding viral entry into target cells. To investigate the roles of IFITMs during fish virus infection, we cloned and characterized an IFITM1 homolog from orange spotted grouper (Epinephelus coioides) (EcIFITM1) in this study. EcIFITM1 encodes a 131-amino-acid polypeptide, which shares 64 and 43% identity with Seriola dumerili and Homo sapiens, respectively. The multiple sequence alignment showed that EcIFITM1 contained five domains, including NTD (aa 1–45), IMD (aa 46–67), CIL (aa 68–93), TMD (aa 94–119), and CTD (aa 120–131). In vitro, the level of EcIFITM1 mRNA expression was significantly up-regulated in response to Singapore grouper iridovirus (SGIV), or red-spotted grouper nervous necrosis virus (RGNNV) infection. EcIFITM1 encoded a cytoplasmic protein, which was partly colocalized with early endosomes, late endosomes, and lysosomes. The ectopic expression of EcIFITM1 significantly inhibited the replication of SGIV or RGNNV, which was demonstrated by the reduced virus production, as well as the levels of viral gene transcription and protein expression. In contrast, knockdown of EcIFITM1 using small interfering RNAs (siRNAs) promoted the replication of both viruses. Notably, EcIFITM1 exerted its antiviral activity in the step of viral entry into the host cells. Furthermore, the results of non-targeted lipometabolomics showed that EcIFITM1 overexpression induced lipid metabolism remodeling in vitro. All of the detected ceramides were significantly increased following EcIFITM1 overexpression, suggesting that EcIFITM1 may suppress SGIV entry by regulating the level of ceramide in the lysosomal system. In addition, EcIFITM1 overexpression positively regulated both interferon-related molecules and ceramide synthesis-related genes. Taken together, our results demonstrated that EcIFITM1 exerted a bi-functional role, including immune regulation and lipid metabolism in response to fish virus infections.


2017 ◽  
Author(s):  
Xin Gao ◽  
Yue Yin ◽  
Neil Daily ◽  
Tyler Engel ◽  
Li Pang ◽  
...  

AbstractA mathematical model describing the electrophysiology and ion handling of cardiomyocytes is a complement to experimental analysis predicting drug-induced proarrhythmic potential in humans as proposed by Comprehensive in vitro Proarrhythmia Assay (CiPA). While CiPA endorses the use of the O’Hara Rudy (ORd) model, which was developed to simulate electrophysiology of human adult ventricular cardiomyocytes (hAVCMs), to predict drug-induced proarrhythmias; the human induced pluripotent stem cell derived-cardiomyocytes (hiPSC-CMs) was proposed for experimental verifications. The hiPSC-CMs, especially cultured in 2D culture dishes, are inherently different from hAVCMs exhibiting different ion channel density and an immature sarcoplasmic reticulum function. To reconcile this mismatch, we have developed a mathematical electrophysiology model of an hiPSC-CM by incorporating differences in gene expressions of ion channels, pumps and receptors in hiPSC-CMs against those found in hAVCMs. This model can be used to model any hiPSC-CM cell line where expression data has been obtained and replaces the background currents for K+ and Na+ in the ORd model with the known ultra-rapid K+ channel and hyperpolarization activated K+/Na+ channel currents. With this new model, three batches each from two different hiPSC-CM cell lines are compared to experimental data of action potential duration. This mathematical model recapitulates a ventricular-like action potential morphology with a Phase 2 plateau lasting a few hundred milliseconds. However, the resting membrane potential is not as depolarized (−65 to −70 mV) as that of hAVCM (-80 mV). The elevated resting membrane potential matches experimental data previously and is thought to keep rapid sodium channels from triggering membrane depolarization instead being replaced by an overexpression of L-Type Ca2+ channel current. This model is a key step in identifying the variability between different hiPSC-CM lines and even batches of the same line, opening the door to realizing analysis of patient specific preparations in the future.


2020 ◽  
Vol 98 (9) ◽  
pp. 611-617 ◽  
Author(s):  
Daisuke Taura ◽  
Kazuhiro Nakao ◽  
Yasuaki Nakagawa ◽  
Hideyuki Kinoshita ◽  
Masakatsu Sone ◽  
...  

To assess the physiological and clinical implications of the C-type natriuretic peptide (CNP)/guanylyl cyclase B (GC-B) system in the human vasculature, we have examined gene expressions of CNP and its receptor, GC-B, in human vascular endothelial cells (ECs) and smooth muscle cells (SMCs) and have also compared the endothelin-1(ET-1)/endothelin receptor-A (ETR-A) and endothelin receptor-B (ETR-B) system in human aortic ECs (HAECs) and vascular SMCs (HSMCs) in vitro. We also examined these gene expressions in human embryonic stem (ES)/induced pluripotent stem cell (iPS)-derived ECs and mural cells (MCs). A little but significant amount of mRNA encoding CNP was detected in both human ES-derived ECs and HAECs. A substantial amount of GC-B was expressed in both ECs (iPS-derived ECs and HAECs) and SMCs (iPS-derived MCs and HSMCs). ET-1 was expressed solely in ECs. ETR-A was expressed in SMCs, while ETR-B was expressed in ECs. These results indicate the existence of a vascular CNP/GC-B system in the human vascular wall, indicating the evidence for clinical implication of the CNP/GC-B system in concert with the ET-1/ETR-A and ETR-B system in the human vasculature.


Author(s):  
K. E. Muse ◽  
D. G. Fischer ◽  
H. S. Koren

Mononuclear phagocytes, a pluripotential cell line, manifest an array of basic extracellular functions. Among these physiological regulatory functions is the expression of spontaneous cytolytic potential against tumor cell targets.The limited observations on human cells, almost exclusively blood monocytes, initially reported limited or a lack of tumoricidal activity in the absence of antibody. More recently, freshly obtained monocytes have been reported to spontaneously impair the biability of tumor target cells in vitro (Harowitz et al., 1979; Montavani et al., 1979; Hammerstrom, 1979). Although the mechanism by which effector cells express cytotoxicity is poorly understood, discrete steps can be distinguished in the process of cell mediated cytotoxicity: recognition and binding of effector to target cells,a lethal-hit stage, and subsequent lysis of the target cell. Other important parameters in monocyte-mediated cytotoxicity include, activated state of the monocyte, effector cell concentrations, and target cell suseptibility. However, limited information is available with regard to the ultrastructural changes accompanying monocyte-mediated cytotoxicity.


1971 ◽  
Vol 68 (1_Suppl) ◽  
pp. S279-S294 ◽  
Author(s):  
Paul Robel

ABSTRACT Of the information available on steroid hormone metabolism in responsive tissues, only that relating hormone metabolism to physiological activity is reviewed, i. e. metabolite activity in isolated in vitro systems, binding of metabolites to target tissue receptors, specific steroid hormone metabolizing enzymes and relationship of hormone metabolism to target organ physiological state. Further, evidence is presented in the androgen field, demonstrating 5α-reduced metabolites, formed inside the target cells, as active compounds. This has led to a consideration of testosterone as a »prehormone«. The possibility that similar events take place in tissues responding to progesterone is discussed. Finally, the role of hormone metabolism in the regulation of hormone availability and/or renewal in target cells is discussed. In this context, reference is made to the potential role of plasma binding proteins and cytosol receptors.


2018 ◽  
Author(s):  
Fantuzzi Federica ◽  
Toivonen Sanna ◽  
Schiavo Andrea Alex ◽  
Pachera Nathalie ◽  
Rajaei Bahareh ◽  
...  

2018 ◽  
Vol 9 (1) ◽  
pp. 4-11 ◽  
Author(s):  
Aparna Bansal ◽  
Himanshu

Introduction: Gene therapy has emerged out as a promising therapeutic pave for the treatment of genetic and acquired diseases. Gene transfection into target cells using naked DNA is a simple and safe approach which has been further improved by combining vectors or gene carriers. Both viral and non-viral approaches have achieved a milestone to establish this technique, but non-viral approaches have attained a significant attention because of their favourable properties like less immunotoxicity and biosafety, easy to produce with versatile surface modifications, etc. Literature is rich in evidences which revealed that undoubtedly, non–viral vectors have acquired a unique place in gene therapy but still there are number of challenges which are to be overcome to increase their effectiveness and prove them ideal gene vectors. Conclusion: To date, tissue specific expression, long lasting gene expression system, enhanced gene transfection efficiency has been achieved with improvement in delivery methods using non-viral vectors. This review mainly summarizes the various physical and chemical methods for gene transfer in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document