scholarly journals ORF3a-Mediated Incomplete Autophagy Facilitates Severe Acute Respiratory Syndrome Coronavirus-2 Replication

Author(s):  
Yafei Qu ◽  
Xin Wang ◽  
Yunkai Zhu ◽  
Weili Wang ◽  
Yuyan Wang ◽  
...  

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the causative agent for the coronavirus disease 2019 (COVID-19) pandemic and there is an urgent need to understand the cellular response to SARS-CoV-2 infection. Beclin 1 is an essential scaffold autophagy protein that forms two distinct subcomplexes with modulators Atg14 and UVRAG, responsible for autophagosome formation and maturation, respectively. In the present study, we found that SARS-CoV-2 infection triggers an incomplete autophagy response, elevated autophagosome formation but impaired autophagosome maturation, and declined autophagy by genetic knockout of essential autophagic genes reduces SARS-CoV-2 replication efficiency. By screening 26 viral proteins of SARS-CoV-2, we demonstrated that expression of ORF3a alone is sufficient to induce incomplete autophagy. Mechanistically, SARS-CoV-2 ORF3a interacts with autophagy regulator UVRAG to facilitate PI3KC3-C1 (Beclin-1-Vps34-Atg14) but selectively inhibit PI3KC3-C2 (Beclin-1-Vps34-UVRAG). Interestingly, although SARS-CoV ORF3a shares 72.7% amino acid identity with the SARS-CoV-2 ORF3a, the former had no effect on cellular autophagy response. Thus, our findings provide the mechanistic evidence of possible takeover of host autophagy machinery by ORF3a to facilitate SARS-CoV-2 replication and raise the possibility of targeting the autophagic pathway for the treatment of COVID-19.

2020 ◽  
Author(s):  
Yafei Qu ◽  
Xin Wang ◽  
Yunkai Zhu ◽  
Yuyan Wang ◽  
Xing Yang ◽  
...  

Abstract SARS-CoV-2 is the causative agent for the COVID-19 pandemic and there is an urgent need to understand the cellular response to SARS-CoV-2 infection. Beclin-1 is an essential scaffold autophagy protein that forms two distinct subcomplexes with modulators Atg14 and UVRAG, responsible for autophagosome formation and maturation, respectively. In the present study, we found that SARS-CoV-2 infection triggers an incomplete autophagy response, elevated autophagosome formation but impaired autophagosome maturation, and declined autophagy by genetic knockout of essential autophagic genes reduces SARS-CoV-2 replication efficiency. By screening 28 viral proteins of SARS-CoV-2, we demonstrated that expression of ORF3a alone is sufficient to induce incomplete autophagy. Mechanistically, SARS-CoV-2 ORF3a interacts with autophagy regulator UVRAG to facilitate Beclin-1-Vps34-Atg14 complex but selectively inhibit Beclin-1-Vps34-UVRAG complex. Interestingly, although SARS-CoV ORF3a shares 72.7% amino acid identity with the SARS-CoV-2 ORF3a, the former had no effect on cellular autophagy response. Thus, our findings provide the mechanistic evidence of possible takeover of host autophagy machinery by ORF3a to facilitate SARS-CoV-2 replication and raises the possibility of targeting the autophagic pathway for the treatment of COVID-19.


2020 ◽  
Author(s):  
Yafei Qu ◽  
Xin Wang ◽  
Yunkai Zhu ◽  
Yuyan Wang ◽  
Xing Yang ◽  
...  

ABSTRACTSARS-CoV-2 is the causative agent for the COVID-19 pandemic and there is an urgent need to understand the cellular response to SARS-CoV-2 infection. Beclin-1 is an essential scaffold autophagy protein that forms two distinct subcomplexes with modulators Atg14 and UVRAG, responsible for autophagosome formation and maturation, respectively. In the present study, we found that SARS-CoV-2 infection triggers an incomplete autophagy response, elevated autophagosome formation but impaired autophagosome maturation, and declined autophagy by genetic knockout of essential autophagic genes reduces SARS-CoV-2 replication efficiency. By screening 28 viral proteins of SARS-CoV-2, we demonstrated that expression of ORF3a alone is sufficient to induce incomplete autophagy. Mechanistically, SARS-CoV-2 ORF3a interacts with autophagy regulator UVRAG to facilitate Beclin-1-Vps34-Atg14 complex but selectively inhibit Beclin-1-Vps34-UVRAG complex. Interestingly, although SARS-CoV ORF3a shares 72.7% amino acid identity with the SARS-CoV-2 ORF3a, the former had no effect on cellular autophagy response. Thus, our findings provide the mechanistic evidence of possible takeover of host autophagy machinery by ORF3a to facilitate SARS-CoV-2 replication and raises the possibility of targeting the autophagic pathway for the treatment of COVID-19.


2007 ◽  
Vol 81 (24) ◽  
pp. 13365-13377 ◽  
Author(s):  
Anastasia N. Vlasova ◽  
Xinsheng Zhang ◽  
Mustafa Hasoksuz ◽  
Hadya S. Nagesha ◽  
Lia M. Haynes ◽  
...  

ABSTRACT In 2002, severe acute respiratory syndrome-associated coronavirus (SARS-CoV) emerged in humans, causing a global epidemic. By phylogenetic analysis, SARS-CoV is distinct from known CoVs and most closely related to group 2 CoVs. However, no antigenic cross-reactivity between SARS-CoV and known CoVs was conclusively and consistently demonstrated except for group 1 animal CoVs. We analyzed this cross-reactivity by an enzyme-linked immunosorbent assay (ELISA) and Western blot analysis using specific antisera to animal CoVs and SARS-CoV and SARS patient convalescent-phase or negative sera. Moderate two-way cross-reactivity between SARS-CoV and porcine CoVs (transmissible gastroenteritis CoV [TGEV] and porcine respiratory CoV [PRCV]) was mediated through the N but not the spike protein, whereas weaker cross-reactivity occurred with feline (feline infectious peritonitis virus) and canine CoVs. Using Escherichia coli-expressed recombinant SARS-CoV N protein and fragments, the cross-reactive region was localized between amino acids (aa) 120 to 208. The N-protein fragments comprising aa 360 to 412 and aa 1 to 213 reacted specifically with SARS convalescent-phase sera but not with negative human sera in ELISA; the fragment comprising aa 1 to 213 cross-reacted with antisera to animal CoVs, whereas the fragment comprising aa 360 to 412 did not cross-react and could be a potential candidate for SARS diagnosis. Particularly noteworthy, a single substitution at aa 120 of PRCV N protein diminished the cross-reactivity. We also demonstrated that the cross-reactivity is not universal for all group 1 CoVs, because HCoV-NL63 did not cross-react with SARS-CoV. One-way cross-reactivity of HCoV-NL63 with group 1 CoVs was localized to aa 1 to 39 and at least one other antigenic site in the N-protein C terminus, differing from the cross-reactive region identified in SARS-CoV N protein. The observed cross-reactivity is not a consequence of a higher level of amino acid identity between SARS-CoV and porcine CoV nucleoproteins, because sequence comparisons indicated that SARS-CoV N protein has amino acid identity similar to that of infectious bronchitis virus N protein and shares a higher level of identity with bovine CoV N protein within the cross-reactive region. The TGEV and SARS-CoV N proteins are RNA chaperons with long disordered regions. We speculate that during natural infection, antibodies target similar short antigenic sites within the N proteins of SARS-CoV and porcine group 1 CoVs that are exposed to an immune response. Identification of the cross-reactive and non-cross-reactive N-protein regions allows development of SARS-CoV-specific antibody assays for screening animal and human sera.


2019 ◽  
Vol 5 (Supplement_1) ◽  
Author(s):  
C Torresi ◽  
F Granberg ◽  
L Bertolotti ◽  
A Oggiano ◽  
B Colitti ◽  
...  

Abstract In order to assess the molecular epidemiology of African swine fever (ASF) in Sardinia, we analyzed a wide range of isolates from wild and domestic pigs over a 31-year period (1978–2009) by genotyping sequence data from the genes encoding the p54 and the p72 proteins and the CVR. On this basis, the analysis of the B602L gene revealed a minor difference, placing the Sardinian isolates into two clusters according to their temporal distribution. As an extension of this study, in order to achieve a higher level of discrimination, three further variable genome regions, namely p30, CD2v, and I73R/I329L, of a large number of isolates collected from outbreaks in the years 2002–14 have been investigated. Sequence analysis of the CD2v region revealed a temporal subdivision of the viruses into two subgroups. These data, together with those from the B602L gene analysis, demonstrated that the viruses circulating in Sardinia belong to p72/genotype I, but since 1990 have undergone minor genetic variations in respect to its ancestor, thus making it impossible to trace isolates, enabling a more accurate assessment of the origin of outbreaks, and extending knowledge of virus evolution. To solve this problem, we have sequenced and annotated the complete genome of nine ASF isolates collected in Sardinia between 1978 and 2012. This was achieved using sequence data determined by next-generation sequencing. The results showed a very high identity with range of nucleotide similarity among isolates of 99.5 per cent to 99.9 per cent. The ASF virus (ASFV) genomes were composed of terminal inverted repeats and conserved and non-conserved ORFs. Among the conserved ORFs, B385R, H339R, and O61R-p12 showed 100 per cent amino acid identity. The same was true for the hypervariable ORFs, with regard to X69R, DP96R, DP60R, EP153R, B407L, I10L, and L60L genes. The EP402R and B602L genes showed, as expected, an amino acid identity range of 98.5 per cent to 100 per cent and 91 per cent to 100 per cent, respectively. In addition, all of the isolates displayed variable intergenic sequences. As a whole, the results from our studies confirmed a remarkable genetic stability of the ASFV/p72 genotype I viruses circulating in Sardinia.


2010 ◽  
Vol 65 (11-12) ◽  
pp. 719-725 ◽  
Author(s):  
Xiaoli Liu ◽  
Jun Chen ◽  
Zhifan Yang

Two cDNAs specific for P450 genes, CYP6AE28 and CYP6AE30, have been isolated from the rice leaf folder Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae). Both cDNApredicted proteins have 504 amino acid residues in length, but with molecular masses of 60177 Dalton for CYP6AE28 and 60020 Dalton for CYP6AE30, and theoretical pI values of 8.49 for CYP6AE28 and 8.56 for CYP6AE30, respectively. Both putative proteins contain the conserved structural and functional domains characteristic of all CYP6 members. CYP6AE28 and CYP6AE30 show 52% amino acid identity to each other; both of them have 49 - 56% identities with CYP6AE1, Cyp6ae12, and CYP6AE14. Phylogenetic analysis showed that the two P450s are grouped in the lineage containing some of the CYP6AE members, CYP6B P450s and CYP321A1. The transcripts of CYP6AE28 and CYP6AE30 were found to be induced in response to TKM-6, a rice variety with high resistance to C. medinalis. The results suggest that the two P450s may play important roles in adaptation to the host plant rice. This is the first report of P450 genes cloned in C. medinalis


2019 ◽  
Vol 64 (2) ◽  
Author(s):  
Laurent Poirel ◽  
Mattia Palmieri ◽  
Michael Brilhante ◽  
Amandine Masseron ◽  
Vincent Perreten ◽  
...  

ABSTRACT A carbapenem-resistant Pseudomonas synxantha isolate recovered from chicken meat produced the novel carbapenemase PFM-1. That subclass B2 metallo-β-lactamase shared 71% amino acid identity with β-lactamase Sfh-1 from Serratia fonticola. The blaPFM-1 gene was chromosomally located and likely acquired. Variants of PFM-1 sharing 90% to 92% amino acid identity were identified in bacterial species belonging to the Pseudomonas fluorescens complex, including Pseudomonas libanensis (PFM-2) and Pseudomonas fluorescens (PFM-3), highlighting that these species constitute reservoirs of PFM-like encoding genes.


2019 ◽  
Vol 65 (11) ◽  
pp. 783-794
Author(s):  
Ajay Kumar Yadav ◽  
Kaushal Kishor Rajak ◽  
Mukesh Bhatt ◽  
Ashok Kumar ◽  
Soumendu Chakravarti ◽  
...  

SLAM (CD150) and nectin-4 are the major morbillivirus receptors responsible for virus pathogenesis and host range expansion. Recently, morbillivirus infections have been reported in unnatural hosts, including endangered species, posing a threat to their conservation. To understand the host range expansion of morbilliviruses, we generated the full-length sequences of morbillivirus receptors (goat, sheep, and dog SLAM, and goat nectin-4) and tried to correlate their role in determining host tropism. A high level of amino acid identity was observed between the sequences of related species, and phylogenetic reconstruction showed that the receptor sequences of carnivores, marine mammals, and small ruminants grouped separately. Analysis of the ligand binding region (V region; amino acid residues 52–136) of SLAM revealed high amino acid identity between small ruminants and bovine SLAMs. Comparison of canine SLAM with ruminants and non-canids SLAM revealed appreciable changes, including charge alterations. Significant differences between feline SLAM and canine SLAM have been reported. The binding motifs of nectin-4 genes (FPAG motif and amino acid residues 60, 62, and 63) were found to be conserved in sheep, goat, and dog. The differences reported in the binding region may be responsible for the level of susceptibility or resistance of a species to a particular morbillivirus.


2019 ◽  
Vol 85 (6) ◽  
Author(s):  
Sara Kleindienst ◽  
Karuna Chourey ◽  
Gao Chen ◽  
Robert W. Murdoch ◽  
Steven A. Higgins ◽  
...  

ABSTRACTDichloromethane (DCM) is susceptible to microbial degradation under anoxic conditions and is metabolized via the Wood-Ljungdahl pathway; however, mechanistic understanding of carbon-chlorine bond cleavage is lacking. The microbial consortium RM contains the DCM degrader “CandidatusDichloromethanomonas elyunquensis” strain RM, which strictly requires DCM as a growth substrate. Proteomic workflows applied to DCM-grown consortium RM biomass revealed a total of 1,705 nonredundant proteins, 521 of which could be assigned to strain RM. In the presence of DCM, strain RM expressed a complete set of Wood-Ljungdahl pathway enzymes, as well as proteins implicated in chemotaxis, motility, sporulation, and vitamin/cofactor synthesis. Four corrinoid-dependent methyltransferases were among the most abundant proteins. Notably, two of three putative reductive dehalogenases (RDases) encoded within strain RM’s genome were also detected in high abundance. Expressed RDase 1 and RDase 2 shared 30% amino acid identity, and RDase 1 was most similar to an RDase ofDehalococcoides mccartyistrain WBC-2 (AOV99960, 52% amino acid identity), while RDase 2 was most similar to an RDase ofDehalobactersp. strain UNSWDHB (EQB22800, 72% amino acid identity). Although the involvement of RDases in anaerobic DCM metabolism has yet to be experimentally verified, the proteome characterization results implicated the possible participation of one or more reductive dechlorination steps and methyl group transfer reactions, leading to a revised proposal for an anaerobic DCM degradation pathway.IMPORTANCENaturally produced and anthropogenically released DCM can reside in anoxic environments, yet little is known about the diversity of organisms, enzymes, and mechanisms involved in carbon-chlorine bond cleavage in the absence of oxygen. A proteogenomic approach identified two RDases and four corrinoid-dependent methyltransferases expressed by the DCM degrader “CandidatusDichloromethanomonas elyunquensis” strain RM, suggesting that reductive dechlorination and methyl group transfer play roles in anaerobic DCM degradation. These findings suggest that the characterized DCM-degrading bacteriumDehalobacterium formicoaceticumand “CandidatusDichloromethanomonas elyunquensis” strain RM utilize distinct strategies for carbon-chlorine bond cleavage, indicating that multiple pathways evolved for anaerobic DCM metabolism. The specific proteins (e.g., RDases and methyltransferases) identified in strain RM may have value as biomarkers for monitoring anaerobic DCM degradation in natural and contaminated environments.


2001 ◽  
Vol 75 (15) ◽  
pp. 7122-7130 ◽  
Author(s):  
E. R. Tulman ◽  
C. L. Afonso ◽  
Z. Lu ◽  
L. Zsak ◽  
G. F. Kutish ◽  
...  

ABSTRACT Lumpy skin disease virus (LSDV), a member of the capripoxvirus genus of the Poxviridae, is the etiologic agent of an important disease of cattle in Africa. Here we report the genomic sequence of LSDV. The 151-kbp LSDV genome consists of a central coding region bounded by identical 2.4 kbp-inverted terminal repeats and contains 156 putative genes. Comparison of LSDV with chordopoxviruses of other genera reveals 146 conserved genes which encode proteins involved in transcription and mRNA biogenesis, nucleotide metabolism, DNA replication, protein processing, virion structure and assembly, and viral virulence and host range. In the central genomic region, LSDV genes share a high degree of colinearity and amino acid identity (average of 65%) with genes of other known mammalian poxviruses, particularly suipoxvirus, yatapoxvirus, and leporipoxviruses. In the terminal regions, colinearity is disrupted and poxvirus homologues are either absent or share a lower percentage of amino acid identity (average of 43%). Most of these differences involve genes and gene families with likely functions involving viral virulence and host range. Although LSDV resembles leporipoxviruses in gene content and organization, it also contains homologues of interleukin-10 (IL-10), IL-1 binding proteins, G protein-coupled CC chemokine receptor, and epidermal growth factor-like protein which are found in other poxvirus genera. These data show that although LSDV is closely related to other members of the Chordopoxvirinae, it contains a unique complement of genes responsible for viral host range and virulence.


Sign in / Sign up

Export Citation Format

Share Document