scholarly journals Synthesis and Supramolecular Assembly of a Terrylene Diimide Derivative Decorated With Long Branched Alkyl Chains

2019 ◽  
Vol 7 ◽  
Author(s):  
Zongxia Guo ◽  
Xiao Zhang ◽  
Lu Zhang ◽  
Yujiao Wang ◽  
Weisheng Feng ◽  
...  
2015 ◽  
Vol 51 (49) ◽  
pp. 9999-10001 ◽  
Author(s):  
Qing Liu ◽  
Qing Li ◽  
Xiao-Jie Cheng ◽  
Yun-Yun Xi ◽  
Bo Xiao ◽  
...  

This work showed that the bipyridyl core and alkyl chains of 4,4′-bipyridyl derivatives are located in shell-like cavities of the twisted cucurbit[14]uril molecule and formed novel shell-like 1 : 1 inclusion complexes.


2012 ◽  
Vol 236-237 ◽  
pp. 815-818
Author(s):  
Ti Feng Jiao ◽  
Jing Xin Zhou

In order to investigate the supramolecular assembly and coordination interaction of special amphiphile, a trigonal Schiff base compound with long alkyl chains was designed and synthesized, and its supramolecular assembly and interaction properties were investigated by spectral and morphological measurements. It was found that the Schiff base compound can be spread on water surface to form stable monolayer. When on the Zn(II) ions subphase, an in situ coordination can occur for all ligands. As a result, a 1:2 complex was formed for the trigonal chain Schiff base with Zn(II) ions through the coordination interaction. Due to the directionality and strong matching of coordination, two Zn(II) ions can be encapsulated into intramolecular space of the trigonal Schiff base compound.


2012 ◽  
Vol 581-582 ◽  
pp. 668-671
Author(s):  
Jing Xin Zhou ◽  
Ti Feng Jiao ◽  
Xu Hui Li ◽  
Feng Yan Wang

In order to investigate the supramolecular assembly and interfacial coordination of special amphiphile, two Schiff Base compounds with alkyl chains and different azobenzene substituted groups were designed and synthesized, and their supramolecular assembly and interfacial properties were investigated by spectral and morphological measurements. It was found that the Schiff base compounds can be spread on water surface to form stable monolayer. When on the Cu(II) ions subphase, an in situ coordination can occur for all ligands. In addition, for the coordination process of C16SB-Me-Azo with Cu(II), there are obvious spectral changes for the alkyl chains. For all process, the headgroups in all amphiphiles have predominant effect in regulating the aggregation mode and spectral changes in organized molecular films.


2012 ◽  
Vol 236-237 ◽  
pp. 810-814
Author(s):  
Ti Feng Jiao ◽  
Jing Xin Zhou

In order to investigate the chiral interfacial assembly of special amphiphile, a trigonal Schiff base compound with long alkyl chains was designed and synthesized, and its supramolecular assembly and interaction properties were investigated by spectral and morphological measurements. Condensed monolayers were obtained on pure water surface, in which flat and uniform domains were obtained for the monolayers. When an anionic tetrakis(4-sulfonatonphenyl)porphine (TPPS) was added into an acidic subphase, an in situ complex formation between the trigonal amphiphile and TPPS occurred. The complex monolayers were transferred onto solid substrate and TPPS existed as J-aggregate and J-aggregate in the complex films. Due to the multisited positive charges in the spacer on acidic subphase, the complex films of trigonal amphiphile with TPPS appeared as short nanorod structures and formed two-dimensional (2D) conglomerate chiral domains.


Author(s):  
U. Aebi ◽  
R. Millonig ◽  
H. Salvo

To date, most 3-D reconstructions of undecorated actin filaments have been obtained from actin filament paracrystal data (for refs, see 1,2). However, due to the fact that (a) the paracrystals may be several filament layers thick, and (b) adjacent filaments may sustantially interdigitate, these reconstructions may be subject to significant artifacts. None of these reconstructions has permitted unambiguous tracing or orientation of the actin subunits within the filament. Furthermore, measured values for the maximal filament diameter both determined by EM and by X-ray diffraction analysis, vary between 6 and 10 nm. Obviously, the apparent diameter of the actin filament revealed in the EM will critically depend on specimen preparation, since it is a rather flexible supramolecular assembly which can easily be bent or distorted. To resolve some of these ambiguities, we have explored specimen preparation conditions which may preserve single filaments sufficiently straight and helically ordered to be suitable for single filament 3-D reconstructions, possibly revealing molecular detail.


1983 ◽  
Vol 44 (4) ◽  
pp. 497-503 ◽  
Author(s):  
J.P. Beaufils ◽  
M. C. Hennion ◽  
R. Rosset

2020 ◽  
Author(s):  
Ian Colliard ◽  
Gregory Morrosin ◽  
Hans-Conrad zur Loye ◽  
May Nyman

Superatoms are nanometer-sized molecules or particles that can form ordered lattices, mimicking their atomic counterparts. Hierarchical assembly of superatoms gives rise to emergent properties in superlattices of quantum-dots, p-block clusters, and fullerenes. Here, we introduce a family of uranium-oxysulfate cluster anions whose hierarchical assembly in water is controlled by two parameters; acidity and the countercation. In acid, larger Ln<sup>III</sup> (Ln=La-Ho) link hexamer (U<sub>6</sub>) oxoclusters into body-centered cubic frameworks, while smaller Ln<sup>III</sup> (Ln=Er-Lu &Y) promote linking of fourteen U<sub>6</sub>-clusters into hollow superclusters (U<sub>84</sub> superatoms). U<sub>84</sub> assembles into superlattices including cubic-closest packed, body-centered cubic, and interpenetrating networks, bridged by interstitial countercations, and U<sub>6</sub>-clusters. Divalent transition metals (TM=Mn<sup>II </sup>and Zn<sup>II</sup>), with no added acid, charge-balance and promote the fusion of 10 U<sub>6</sub> and 10 U-monomers into a wheel–shaped cluster (U<sub>70</sub>). Dissolution of U<sub>70</sub> in organic media reveals (by small-angle Xray scattering) that differing supramolecular assemblies are accessed, controlled by TM-linking of U<sub>70</sub>-clusters. <br>


2012 ◽  
Vol 68 (4) ◽  
pp. o152-o155 ◽  
Author(s):  
Malcolm A. Kelland ◽  
Amber L. Thompson

Tetraisohexylammonium bromide [systematic name: tetrakis(4-methylpentyl)azanium bromide], C24H52N+·Br−, is a powerful structure II clathrate hydrate crystal-growth inhibitor. The crystal structure, in the space groupP3221, contains one ammonium cation and one bromide anion in the asymmetric unit, both on general positions. At 100 K, the ammonium cation exhibits one ordered isohexyl chain and three disordered isohexyl chains. At 250 K, all four isohexyl chains are disordered. In an effort to reduce the disorder in the alkyl chains, the crystal was thermally cycled, but the disorder remained, indicating that it is dynamic in nature.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3946
Author(s):  
Rui A. Gonçalves ◽  
Yeng-Ming Lam ◽  
Björn Lindman

Double-chain amphiphilic compounds, including surfactants and lipids, have broad significance in applications like personal care and biology. A study on the phase structures and their transitions focusing on dioctadecyldimethylammonium chloride (DODAC), used inter alia in hair conditioners, is presented. The phase behaviour is dominated by two bilayer lamellar phases, Lβ and Lα, with “solid” and “melted” alkyl chains, respectively. In particular, the study is focused on the effect of additives of different polarity on the phase transitions and structures. The main techniques used for investigation were differential scanning calorimetry (DSC) and small- and wide-angle X-ray scattering (SAXS and WAXS). From the WAXS reflections, the distance between the alkyl chains in the bilayers was obtained, and from SAXS, the thicknesses of the surfactant and water layers. The Lα phase was found to have a bilayer structure, generally found for most surfactants; a Lβ phase made up of bilayers with considerable chain tilting and interdigitation was also identified. Depending mainly on the polarity of the additives, their effects on the phase stabilities and structure vary. Compounds like urea have no significant effect, while fatty acids and fatty alcohols have significant effects, but which are quite different depending on the nonpolar part. In most cases, Lβ and Lα phases exist over wide composition ranges; certain additives induce transitions to other phases, which include cubic, reversed hexagonal liquid crystals and bicontinuous liquid phases. For a system containing additives, which induce a significant lowering of the Lβ–Lα transition, we identified the possibility of a triggered phase transition via dilution with water.


Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 294
Author(s):  
Thunyarat Surasiang ◽  
Chalongrat Noree

Asparagine synthetase deficiency (ASD) has been found to be caused by certain mutations in the gene encoding human asparagine synthetase (ASNS). Among reported mutations, A6E mutation showed the greatest reduction in ASNS abundance. However, the effect of A6E mutation has not yet been tested with yeast asparagine synthetase (Asn1/2p). Here, we constructed a yeast strain by deleting ASN2 from its genome, introducing the A6E mutation codon to ASN1, along with GFP downstream of ASN1. Our mutant yeast construct showed a noticeable decrease of Asn1p(A6E)-GFP levels as compared to the control yeast expressing Asn1p(WT)-GFP. At the stationary phase, the A6E mutation also markedly lowered the assembly frequency of the enzyme. In contrast to Asn1p(WT)-GFP, Asn1p(A6E)-GFP was insensitive to changes in the intracellular energy levels upon treatment with sodium azide during the log phase or fresh glucose at the stationary phase. Our study has confirmed that the effect of A6E mutation on protein expression levels of asparagine synthetase is common in both unicellular and multicellular eukaryotes, suggesting that yeast could be a model of ASD. Furthermore, A6E mutation could be introduced to the ASNS gene of acute lymphoblastic leukemia patients to inhibit the upregulation of ASNS by cancer cells, reducing the risk of developing resistance to the asparaginase treatment.


Sign in / Sign up

Export Citation Format

Share Document