scholarly journals Chemistry-Assisted Proteomic Profiling of O-GlcNAcylation

2021 ◽  
Vol 9 ◽  
Author(s):  
Qiang Zhu ◽  
Wen Yi

The modification on proteins with O-linked N-acetyl-β-D-glucosamine (O-GlcNAcylation) is essential for normal cell physiology. Dysregulation of O-GlcNAcylation leads to many human diseases, such as cancer, diabetes and neurodegenerative diseases. Recently, the functional role of O-GlcNAcylation in different physiological states has been elucidated due to the booming detection technologies. Chemical approaches for the enrichment of O-GlcNAcylated proteins combined with mass spectrometry-based proteomics enable the profiling of protein O-GlcNAcylation in a system-wide level. In this review, we summarize recent progresses on the enrichment and proteomic profiling of protein O-GlcNAcylation.

2020 ◽  
Author(s):  
Juri Habicht ◽  
Ashley Mooneyham ◽  
Asumi Hoshino ◽  
Mihir Shetty ◽  
Xiaonan Zhang ◽  
...  

AbstractIn invertebrates, UNC-45 regulates myosin stability and functions. Vertebrates have two distinct isoforms of the protein: UNC-45B, expressed in muscle cells only and UNC-45A, expressed in all cells and implicated in regulating both Non-Muscle Myosin II (NMII)- and microtubule (MT)-associated functions. Here we show for the first time that: a) in vitro UNC-45A binds to the MT lattice and weakens its integrity leading to MT bending, breakage and depolymerization, b) in cells, UNC-45A overexpression causes loss of MT mass and increase in MT breakages, c) both in vitro and in cells, UNC-45A destabilizes MTs independent of its NMII C-terminal binding domain and destabilization occurs even in presence of the NMII inhibitor blebbistatin. These findings are consistent with a not mutually exclusive but rather dual role of UNC-45A in regulating NMII activity and MT stability.Because many human diseases, from cancer to neurodegenerative diseases, are caused by or associated with deregulation of MT stability our findings have profound implications in both, the biology of MTs as well as the biology of human diseases and possible therapeutic implications for their treatment.


2015 ◽  
Vol 35 (5) ◽  
pp. 1663-1676 ◽  
Author(s):  
Yu-jie Li ◽  
Qin Jiang ◽  
Guo-fan Cao ◽  
Jin Yao ◽  
Biao Yan

Autophagy is an important intracellular degradative process that delivers cytoplasmic proteins to lysosome for degradation. Dysfunction of autophagy is implicated in several human diseases, such as neurodegenerative diseases, infectious diseases, and cancers. Autophagy-related proteins are constitutively expressed in the eye. Increasing studies have revealed that abnormal autophagy is an important pathological feature of several ocular diseases. Pharmacological manipulation of autophagy may provide an alternative therapeutic target for some ocular diseases. In this manuscript, we reviewed the relevant progress about the role of autophagy in the pathogenesis of ocular diseases.


2020 ◽  
Vol 21 (16) ◽  
pp. 5699 ◽  
Author(s):  
Iwona Rzeszutek ◽  
Aditi Singh

The past two decades have seen extensive research done to pinpoint the role of microRNAs (miRNAs) that have led to discovering thousands of miRNAs in humans. It is not, therefore, surprising to see many of them implicated in a number of common as well as rare human diseases. In this review article, we summarize the progress in our understanding of miRNA-related research in conjunction with different types of cancers and neurodegenerative diseases, as well as their potential in generating more reliable diagnostic and therapeutic approaches.


2020 ◽  
Vol 21 (21) ◽  
pp. 8208
Author(s):  
Yi Jin ◽  
Yanjie Tan ◽  
Pengxiang Zhao ◽  
Zhuqing Ren

Lipid homeostasis is essential for normal cell physiology. Generally, lipids are stored in a lipid droplet (LD), a ubiquitous organelle consisting of a neutral lipid core and a single layer of phospholipid membrane. It is thought that LDs are generated from the endoplasmic reticulum and then released into the cytosol. Recent studies indicate that LDs can exist in the nucleus, where they play an important role in the maintenance of cell phospholipid homeostasis. However, the details of nuclear lipid droplet (nLD) generation have not yet been clearly characterized. SEIPIN is a nonenzymatic protein encoded by the Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) gene. It is associated with lipodystrophy diseases. Many recent studies have indicated that SEIPIN is essential for LDs generation. Here, we review much of this research in an attempt to explain the role of SEIPIN in nLD generation. From an integrative perspective, we conclude by proposing a theoretical model to explain how SEIPIN might participate in maintaining homeostasis of lipid metabolism.


Metabolites ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 135 ◽  
Author(s):  
Kevin Chen ◽  
Dodge Baluya ◽  
Mehmet Tosun ◽  
Feng Li ◽  
Mirjana Maletic-Savatic

Neurodegenerative diseases are prevalent and devastating. While extensive research has been done over the past decades, we are still far from comprehensively understanding what causes neurodegeneration and how we can prevent it or reverse it. Recently, systems biology approaches have led to a holistic examination of the interactions between genome, metabolome, and the environment, in order to shed new light on neurodegenerative pathogenesis. One of the new technologies that has emerged to facilitate such studies is imaging mass spectrometry (IMS). With its ability to map a wide range of small molecules with high spatial resolution, coupled with the ability to quantify them at once, without the need for a priori labeling, IMS has taken center stage in current research efforts in elucidating the role of the metabolome in driving neurodegeneration. IMS has already proven to be effective in investigating the lipidome and the proteome of various neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, Huntington’s, multiple sclerosis, and amyotrophic lateral sclerosis. Here, we review the IMS platform for capturing biological snapshots of the metabolic state to shed more light on the molecular mechanisms of the diseased brain.


2017 ◽  
Vol 233 (5) ◽  
pp. 3982-3999 ◽  
Author(s):  
Debora Lo Furno ◽  
Giuliana Mannino ◽  
Rosario Giuffrida

Author(s):  
A. Kawaoi

Numbers of immunological approach have been made to the amyloidosis through the variety of predisposing human diseases and the experimentally induced animals by the greater number of agents. The results suggest an important role of impaired immunity involving both humoral and cell-mediated aspects.Recently the author has succeeded in producing amyloidosis in the rabbits and mice by the injections of immune complex of heat denatured DNA.The aim of this report is to demonstrate the details of the ultrastructure of the amyloidosis induced by heterologous insoluble immune complex. Eleven of twelve mice, dd strain, subcutaneously injected twice a week with Freund's complete adjuvant and four of seven animals intraperitonially injected developed systemic amyloidosis two months later from the initial injections. The spleens were electron microscopically observed.


Sign in / Sign up

Export Citation Format

Share Document