scholarly journals Attenuation of Listeria monocytogenes Virulence by Cannabis sativa L. Essential Oil

Author(s):  
Emanuela Marini ◽  
Gloria Magi ◽  
Gianna Ferretti ◽  
Tiziana Bacchetti ◽  
Angelica Giuliani ◽  
...  
Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
NG Chorianopoulos ◽  
PN Skandamis ◽  
GJE Nychas ◽  
SA Haroutounian

LWT ◽  
2021 ◽  
pp. 111881
Author(s):  
Jessica Audrey Feijó Corrêa ◽  
João Vitor Garcia dos Santos ◽  
Alberto Gonçalves Evangelista ◽  
Anne Caroline Schoch Marques Pinto ◽  
Renata Ernlund Freitas de Macedo ◽  
...  

2021 ◽  
pp. 108201322110132
Author(s):  
Mariem Somrani ◽  
Hajer Debbabi ◽  
Alfredo Palop

The antibacterial and antibiofilm activity of essential oil of clove against Listeria monocytogenes and Salmonella Enteritidis were investigated. The chemical composition of the oil was characterized by gas chromatography–mass spectrometry. Stock solution of the essential oil of clove was prepared in 95% (v/v) ethanol (EOC). The antibacterial assays were performed by disk diffusion assay and minimal inhibitory concentration (MIC). The biomass of adhered cells and preformed biofilms after incubation with different concentrations of EOC was assessed by crystal violet. Eugenol was the major bioactive compound of clove essential oil, accounting for 78.85% of the total composition. The MIC values for L. monocytogenes and S. Enteritidis were 0.05 mg/ml and 0.1 mg/ml, respectively. The initial cell adhesion at MIC was inhibited by 61.8% for L. monocytogenes and 49.8% for S. Enteritidis. However, the effect of EOC was less marked on biofilm eradication than on cell adhesion. At MIC and within 1 hour of incubation with the EOC, the preformed biofilms were reduced by 30.2% and 20.3% for L. monocytogenes and S. Enteritidis, respectively. These results suggest that sanitizers based on clove essential oil could be a potential strategy to control biofilms in food-related environments.


2005 ◽  
Vol 68 (12) ◽  
pp. 2559-2566 ◽  
Author(s):  
SYLVIA GAYSINSKY ◽  
P. MICHAEL DAVIDSON ◽  
BARRY D. BRUCE ◽  
JOCHEN WEISS

Growth inhibition of four strains of Escherichia coli O157:H7 (H1730, F4546, 932, and E0019) and Listeria monocytogenes (Scott A, 101, 108, and 310) by essential oil components (carvacrol and eugenol) solubilized in nonionic surfactant micelles (Surfynol 465 and 485W) was investigated. Concentrations of encapsulated essential oil components ranged from 0.02 to 1.25% depending on compound, surfactant type, and surfactant concentration (0.5 to 5%). Eugenol encapsulated in Surfynol 485W micelles was most efficient in inhibiting growth of the pathogens; 1% Surfynol 485W and 0.15% eugenol was sufficient to inhibit growth of all strains of E. coli O157:H7 and three of four strains of L. monocytogenes (Scott A, 310, and 108). The fourth strain, L. monocytogenes 101, was inhibited by 2.5% Surfynol and 0.225% eugenol. One percent Surfynol 485W in combination with 0.025% carvacrol was effective in inhibiting three of four strains of E. coli O157:H7. Strain H1730 was the most resistant strain, requiring 0.3% carvacrol and 5% surfactant for complete inhibition. Growth inhibition of L. monocytogenes by combinations of carvacrol and Surfynol 465 ranged between 0.15 and 0.35% and 1 and 3.75%, respectively. Generally, the antimicrobial activity of Surfynol 465 in combination with eugenol was higher than that for the combination with carvacrol. The potent activity was attributed to increased solubility of essential oil components in the aqueous phase due to the presence of surfactants and improved interactions of antimicrobials with microorganisms.


LWT ◽  
2011 ◽  
Vol 44 (10) ◽  
pp. 2260-2265 ◽  
Author(s):  
Seyed Mehdi Razavi Rohani ◽  
Mehran Moradi ◽  
Tooraj Mehdizadeh ◽  
Seyyed Siavash Saei-Dehkordi ◽  
Mansel W. Griffiths

2015 ◽  
Vol 21 (4) ◽  
pp. 178-183 ◽  
Author(s):  
Mir-Hassan Moosavy ◽  
Yasser Shahbazi ◽  
Nassim Shavisi

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Valtcho D. Zheljazkov ◽  
Filippo Maggi

AbstractHemp (Cannabis sativa L.) synthesizes and accumulates a number of secondary metabolites such as terpenes and cannabinoids. They are mostly deposited as resin into the glandular trichomes occurring on the leaves and, to a major extent, on the flower bracts. In the last few years, hemp for production of high-value chemicals became a major commodity in the U.S. and across the world. The hypothesis was that hemp biomass valorization can be achieved through distillation and procurement of two high-value products: the essential oil (EO) and cannabinoids. Furthermore, the secondary hypothesis was that the distillation process will decarboxylate cannabinoids hence improving cannabinoid composition of extracted hemp biomass. Therefore, this study elucidated the effect of steam distillation on changes in the content and compositional profile of cannabinoids in the extracted biomass. Certified organic CBD-hemp strains (chemovars, varieties) Red Bordeaux, Cherry Wine and Umpqua (flowers and some upper leaves) and a T&H strain that included chopped whole-plant biomass, were subjected to steam distillation, and the EO and cannabinoids profile were analyzed by gas chromatography-mass spectrometry (GC–MS) and HPLC, respectively. The distillation of hemp resulted in apparent decarboxylation and conversion of cannabinoids in the distilled biomass. The study demonstrated a simple method for valorization of CBD-hemp through the production of two high-value chemicals, i.e. EO and cannabinoids with improved profile through the conversion of cannabidiolic acid (CBD-A) into cannabidiol (CBD), cannabichromenic acid (CBC-A) into cannabichromene (CBC), cannabidivarinic acid (CBDV-A) into cannabidivarin (CBDV), cannabigerolic acid (CBG-A) into cannabigerol (CBG), and δ-9-tetrahydrocannabinolic acid (THC-A) into δ-9-tetrahydrocannabinol (THC). In addition, the distilled biomass contained CBN while the non-distilled did not. Distillation improved the cannabinoids profile; e.g. the distilled hemp biomass had 3.4 times higher CBD in variety Red Bordeaux, 5.6 times in Cherry Wine, 9 times in variety Umpqua, and 6 times in T&H compared to the original non-distilled samples, respectively. Most of the cannabinoids remained in the distilled biomass and small amounts of CBD were transferred to the EO. The CBD concentration in the EO was as follows: 5.3% in the EO of Umpqua, 0.15% in the EO of Cherry Wine and Red Bordeaux and 0.06% in the EO of T&H. The main 3 EO constituents were similar but in different ratio; myrcene (23.2%), (E)-caryophyllene (16.7%) and selina-3,7(11)-diene (9.6%) in Cherry Wine; (E)-caryophyllene (~ 20%), myrcene (16.6%), selina-3,7(11)-diene (9.6%), α-humulene (8.0%) in Red Bordeaux; (E)-caryophyllene (18.2%) guaiol (7.0%), 10-epi-γ-eudesmol (6.9%) in Umpqua; and (E)-caryophyllene (30.5%), α-humulene (9.1%), and (E)-α-bisabolene (6.5%) in T&H. In addition, distillation reduced total THC in the distilled biomass. Scanning electron microscopy (SEM) analyses revealed that most of the glandular trichomes in the distilled biomass were not disturbed (remained intact); that suggest a possibility for terpenes evaporation through the epidermal membrane covering the glandular trichomes leaving the cannabinoids in the trichomes. This explained the fact that distillation resulted in terpene extraction while the cannabinoids remained in the distilled material.


Sign in / Sign up

Export Citation Format

Share Document