scholarly journals Differential Expression of Human MicroRNAs During Dengue Virus Infection in THP-1 Monocytes

Author(s):  
Átila Duque Rossi ◽  
Luiza Mendonça Higa ◽  
Alice Laschuk Herlinger ◽  
Marcelo Ribeiro-Alves ◽  
Mariane Talon de Menezes ◽  
...  

Dengue virus (DENV) is the most widespread arbovirus, responsible for a wide range of clinical manifestations, varying from self-limited illness to severe hemorrhagic fever. Dengue severity is associated with host intense proinflammatory response and monocytes have been considered one of the key cell types involved in the early steps of DENV infection and immunopathogenesis. To better understand cellular mechanisms involved in monocyte infection by DENV, we analyzed the expression levels of 754 human microRNAs in DENV-infected THP-1 cells, a human monocytic cell line. Eleven human microRNAs showed differential expression after DENV infection and gene ontology and enrichment analysis revealed biological processes potentially affected by these molecules. Five downregulated microRNAs were significantly linked to cellular response to stress, four to cell death/apoptosis, two to innate immune responses and one upregulated to vesicle mediated, TGF-β signaling, phosphatidylinositol mediated signaling, lipid metabolism process and blood coagulation.

2020 ◽  
Vol 94 (24) ◽  
Author(s):  
Matteo Ferrari ◽  
Alessandra Zevini ◽  
Enrico Palermo ◽  
Michela Muscolini ◽  
Magdalini Alexandridi ◽  
...  

ABSTRACT Dengue virus (DENV) is a mosquito-borne virus that infects upward of 300 million people annually and has the potential to cause fatal hemorrhagic fever and shock. While the parameters contributing to dengue immunopathogenesis remain unclear, the collapse of redox homeostasis and the damage induced by oxidative stress have been correlated with the development of inflammation and progression toward the more severe forms of disease. In the present study, we demonstrate that the accumulation of reactive oxygen species (ROS) late after DENV infection (>24 hpi) resulted from a disruption in the balance between oxidative stress and the nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent antioxidant response. The DENV NS2B3 protease complex strategically targeted Nrf2 for degradation in a proteolysis-independent manner; NS2B3 licensed Nrf2 for lysosomal degradation. Impairment of the Nrf2 regulator by the NS2B3 complex inhibited the antioxidant gene network and contributed to the progressive increase in ROS levels, along with increased virus replication and inflammatory or apoptotic gene expression. By 24 hpi, when increased levels of ROS and antiviral proteins were observed, it appeared that the proviral effect of ROS overcame the antiviral effects of the interferon (IFN) response. Overall, these studies demonstrate that DENV infection disrupts the regulatory interplay between DENV-induced stress responses, Nrf2 antioxidant signaling, and the host antiviral immune response, thus exacerbating oxidative stress and inflammation in DENV infection. IMPORTANCE Dengue virus (DENV) is a mosquito-borne pathogen that threatens 2.5 billion people in more than 100 countries annually. Dengue infection induces a spectrum of clinical symptoms, ranging from classical dengue fever to severe dengue hemorrhagic fever or dengue shock syndrome; however, the complexities of DENV immunopathogenesis remain controversial. Previous studies have reported the importance of the transcription factor Nrf2 in the control of redox homeostasis and antiviral/inflammatory or death responses to DENV. Importantly, the production of reactive oxygen species and the subsequent stress response have been linked to the development of inflammation and progression toward the more severe forms of the disease. Here, we demonstrate that DENV uses the NS2B3 protease complex to strategically target Nrf2 for degradation, leading to a progressive increase in oxidative stress, inflammation, and cell death in infected cells. This study underlines the pivotal role of the Nrf2 regulatory network in the context of DENV infection.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Ashley L St John ◽  
Abhay PS Rathore ◽  
Bhuvanakantham Raghavan ◽  
Mah-Lee Ng ◽  
Soman N Abraham

Dengue Virus (DENV), a flavivirus spread by mosquito vectors, can cause vascular leakage and hemorrhaging. However, the processes that underlie increased vascular permeability and pathological plasma leakage during viral hemorrhagic fevers are largely unknown. Mast cells (MCs) are activated in vivo during DENV infection, and we show that this elevates systemic levels of their vasoactive products, including chymase, and promotes vascular leakage. Treatment of infected animals with MC-stabilizing drugs or a leukotriene receptor antagonist restores vascular integrity during experimental DENV infection. Validation of these findings using human clinical samples revealed a direct correlation between MC activation and DENV disease severity. In humans, the MC-specific product, chymase, is a predictive biomarker distinguishing dengue fever (DF) and dengue hemorrhagic fever (DHF). Additionally, our findings reveal MCs as potential therapeutic targets to prevent DENV-induced vasculopathy, suggesting MC-stabilizing drugs should be evaluated for their effectiveness in improving disease outcomes during viral hemorrhagic fevers.


Vaccines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 88 ◽  
Author(s):  
Jisang Park ◽  
Hyun-Young Lee ◽  
Ly Tuan Khai ◽  
Nguyen Thi Thu Thuy ◽  
Le Quynh Mai ◽  
...  

Dengue virus (DENV) comprises four serotypes in the family Flaviviridae and is a causative agent of dengue-related diseases, including dengue fever. Dengue fever is generally a self-limited febrile illness. However, secondary infection of patients with a suboptimal antibody (Ab) response provokes life-threatening severe dengue hemorrhagic fever or dengue shock syndrome. To develop a potent candidate subunit vaccine against DENV infection, we developed the EDII-cEDIII antigen, which contains partial envelope domain II (EDII) including the fusion loop and BC loop epitopes together with consensus envelope domain III (cEDIII) of all four serotypes of DENV. We purified Ab from mice after immunization with EDII-cEDIII or cEDIII and compared their virus neutralization and Ab-dependent enhancement of DENV infection. Anti-EDII-cEDIII Ab showed stronger neutralizing activity and lower Ab-dependent peak enhancement of DENV infection compared with anti-cEDIII Ab. Following injection of Ab-treated DENV into AG129 mice, anti-EDII-cEDIII Ab ameliorated DENV infection in tissues with primary and secondary infection more effectively than anti-cEDIII Ab. In addition, anti-EDII-cEDIII Ab protected against DENV1, 2, and 4 challenge. We conclude that EDII-cEDIII induces neutralizing and protective Abs, and thus, shows promise as a candidate subunit vaccine for DENV infection.


Author(s):  
Henry Puerta-Guardo ◽  
Scott B. Biering ◽  
Eva Harris ◽  
Norma Pavia-Ruz ◽  
Gonzalo Vázquez-Prokopec ◽  
...  

Dengue is the most prevalent emerging mosquito-borne viral disease, affecting more than 40% of the human population worldwide. Many symptomatic dengue virus (DENV) infections result in a relatively benign disease course known as dengue fever (DF). However, a small proportion of patients develop severe clinical manifestations, englobed in two main categories known as dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Secondary infection with any of the four dengue virus serotypes (DENV1, -2, -3, and -4) is a risk factor to develop severe forms of dengue disease. DSS is primarily characterized by sudden and abrupt endothelial dysfunction, resulting in vascular leak and organ impairment, which may progress to hypovolemic shock and death. Severe DENV disease (DHF/DSS) is thought to follow a complex relationship between distinct immunopathogenic processes involving host and viral factors, such as the serotype cross-reactive antibody-dependent enhancement (ADE), the activation of T cells and complement pathways, the phenomenon of the cytokine storm, and the newly described viral toxin activity of the nonstructural protein 1 (NS1), which together play critical roles in inducing vascular leak and virus pathogenesis. In this chapter that is divided in two parts, we will outline the recent advances in our understanding of DENV pathogenesis, highlighting key viral-host interactions and discussing how these interactions may contribute to DENV immunopathology and the development of vascular leak, a hallmark of severe dengue. Part I will address the general features of the DENV complex, including the virus structure and genome, epidemiology, and clinical outcomes, followed by an updated review of the literature describing the host innate immune strategies as well as the viral mechanisms acting against and in favor of the DENV replication cycle and infection.


2011 ◽  
Vol 92 (10) ◽  
pp. 2272-2280 ◽  
Author(s):  
Tsutomu Omatsu ◽  
Meng Ling Moi ◽  
Takanori Hirayama ◽  
Tomohiko Takasaki ◽  
Shinichiro Nakamura ◽  
...  

Dengue virus (DENV) causes a wide range of illnesses in humans: dengue fever (DF), dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Animal models that constantly develop high levels of viraemia are required for the development of protective and preventive measures. Common marmosets (Callithrix jacchus) demonstrated high levels of viraemia after inoculation with clinical isolates of four serotypes of DENV; in particular, over 106 genome copies ml−1 after inoculation with DENV-2. Non-structural protein 1 and DENV-specific IgM and IgG antibodies were consistently detected. The DENV-2 genome was detected in lymphoid organs including the lymph nodes, spleen and thymus, and also in non-lymphoid organs. DENV antigen was detected by immunohistochemistry in the liver and spleen from inoculated marmosets. Four marmosets were reinoculated with DENV-2 at 33 weeks after primary inoculation with DENV-2. The DENV-2 genome was not detected in any of these marmosets, indicating protection from a secondary infection. The results indicate that common marmosets are highly sensitive to DENV infection, and suggest that marmosets could be a reliable primate model for the evaluation of candidate vaccines.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Yung-Chun Chuang ◽  
Hong-Ru Chen ◽  
Trai-Ming Yeh

Dengue virus (DENV) infection is the most common cause of viral hemorrhagic fever, which can lead to life-threatening dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). Hemorrhage and plasma leakage are two major hallmarks of DHF/DSS. Because the mechanisms causing these pathogenic changes are unclear, there is no effective therapy against DHF/DSS. In this review, we focus on the possible pathogenic effects of a pleiotropic cytokine, macrophage migration inhibitory factor (MIF), on the pathogenesis of DENV infection. MIF is a critical mediator of the host immune response and inflammation, and there is a correlation between the serum levels of MIF and disease severity in dengue patients. Furthermore, MIF knock-out mice exhibit less severe clinical disease and lethality. However, the role of MIF in the pathogenesis of DHF/DSS is not limited to immune cell recruitment. Recent evidence indicates that DENV infection induced MIF production and may contribute to vascular hyperpermeability and viral replication during DENV infection. The expression of both adhesion and coagulation molecules on MIF-stimulated monocytes and endothelial cells is also increased, which may contribute to inflammatory and anticoagulatory states during DHF/DSS. Therefore, blocking MIF production or its function may provide a solution for the treatment and prevention of DHF/DSS.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xingyu Li ◽  
Zhuo Dong ◽  
Yan Liu ◽  
Weifeng Song ◽  
Jieying Pu ◽  
...  

Dengue Virus (DENV) infection can cause severe illness such as highly fatality dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Innate immune activation by Nod-like receptors (NLRs) is a critical part of host defense against viral infection. Here, we revealed a key mechanism of NLRP12-mediated regulation in DENV infection. Firstly, NLRP12 expression was inhibited in human macrophage following DENV or other flaviviruses (JEV, YFV, ZIKV) infection. Positive regulatory domain 1 (PRDM1) was induced by DENV or poly(I:C) and suppressed NLRP12 expression, which was dependent on TBK-1/IRF3 and NF-κB signaling pathways. Moreover, NLRP12 inhibited DENV and other flaviviruses (JEV, YFV, ZIKV) replication, which relied on the well-conserved nucleotide binding structures of its NACHT domain. Furthermore, NLRP12 could interact with heat shock protein 90 (HSP90) dependent on its Walker A and Walker B sites. In addition, NLRP12 enhanced the production of type I IFNs (IFN-α/β) and interferon-stimulated genes (ISGs), including IFITM3, TRAIL and Viperin. Inhibition of HSP90 with 17-DMAG impaired the upregulation of type I IFNs and ISGs induced by NLRP12. Taken together, we demonstrated a novel mechanism that NLRP12 exerted anti-viral properties in DENV and other flaviviruses (JEV, YFV, ZIKV) infection, which brings up a potential target for the treatment of DENV infection.


2021 ◽  
Author(s):  
Javier Serrato-Salas ◽  
Isabel Cruz Zazueta ◽  
Jose Luis Montiel Hernandez ◽  
Judith Gonzalez Christen

The activation of the innate immune response requires sialic acid residues removal. Nevertheless, it is unknown the role of these changes during the Dengue virus infection. We determine if during Dengue virus infection, the sialic acid residues alter on the macrophages. The human monocytic cell line THP-1 was differentiated into macrophages and were infected with Dengue virus. The changes in sialic acid were evaluated by lectin blot in the cellular lysate. The activity of neuraminidase was defined by RT-PCR and fluorescence assays. Macrophages infection with DENV-2 reduces α-2,6 sialic acid residues at 24 h, and α-2,3 sialic acid residues lower at 48 h in some proteins. Transcriptional profile and enzymatic activities of Neu-1 showed a narrow decrease. Sialic acid residues oscillation in varied conformations and times suggest a role of a selective mechanism to remove these residues. The lesser participation of Neu-1 in this process could be concomitant to other similar enzymes such as sialyl-transferases, or the phenomenon requires minimal activity to have a relevant biological function.


2019 ◽  
Vol 10 (01) ◽  
pp. 13-22
Author(s):  
A.S. Siskayani ◽  
I Made Sumarya ◽  
N.L.P Kartika Sari

Clinical manifestations of dengue virus infection vary from unspecified fever, dengue fever (DF) and dengue hemorrhagic fever (DHF). The fundamental difference in the diagnosis between DF and DHF is plasma leakage, hypotension, thrombocytopenia and hemorrhagic diathesis in DHF. The objectives of the study were to determine the lowest platelet, haematocrit increase, and TNF-α levels in DF and DHF patients as an indication of severity of dengue virus infection. The cross-sectional study was conducted by taking 54 blood samples of patients aged 26-45 years who were infected by dengue virus and grouped into two groups: DF patient group (27 blood samples) and DHF group (27 blood samples). The lowest platelets and hematocrit rise were determined by Hematology Analyzer and the TNF-α levels were determined by ELISA. The data obtained were statistically analyzed by independent Mann-Whitney test. The results showed that the lowest mean platelet counts of DF patients were significantly (p <0.01) higher than those of DHF patients. The mean hematocrit increase in DF patients was significantly (p <0.01) lower than that of the DHF patients and the mean TNF-α levels of DF patients were significantly (p <0.01) lower than the DHF patients. Based on the results of this study it can be concluded that the lowest platelets, hematocrit increase and TNF-α levels are an indication of the severity of dengue virus infection.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Berta Nelly Restrepo ◽  
Mark E. Beatty ◽  
Yenny Goez ◽  
Ruth E. Ramirez ◽  
G. William Letson ◽  
...  

A dengue fever surveillance study was conducted at three medical facilities located in the low-income district of San Javier in Medellin, Colombia. During March 2008 to 2009, 781 patients with fever regardless of chief complaint were recruited for acute dengue virus infection testing. Of the 781 tested, 73 (9.3%) were positive for dengue infection. Serotypes DENV-2 (77%) and -3 (23%) were detected by PCR. One patient met the diagnostic criteria for dengue hemorrhagic fever. Only 3 out of 73 (4.1%) febrile subjects testing positive for dengue infection were diagnosed with dengue fever by the treating physician. This study confirms dengue virus as an important cause of acute febrile illness in Medellin, Colombia, but it is difficult to diagnose without dengue diagnostic testing.


Sign in / Sign up

Export Citation Format

Share Document