scholarly journals Trypanosoma cruzi Induces B Cells That Regulate the CD4+ T Cell Response

Author(s):  
Martín Somoza ◽  
Adriano Bertelli ◽  
Cecilia A. Pratto ◽  
Ramiro E. Verdun ◽  
Oscar Campetella ◽  
...  

Trypanosoma cruzi infection induces a polyclonal B cell proliferative response characterized by maturation to plasma cells, excessive generation of germinal centers, and secretion of parasite-unrelated antibodies. Although traditionally reduced to the humoral response, several infectious and non-infectious models revealed that B lymphocytes could regulate and play crucial roles in cellular responses. Here, we analyze the trypomastigote-induced effect on B cells, their effects on CD4+ T cells, and their correlation with in vivo findings. The trypomastigotes were able to induce the proliferation and the production of IL-10 or IL-6 of naïve B cells in co-culture experiments. Also, we found that IL-10-producing B220lo cells were elicited in vivo. We also found up-regulated expression of FasL and PD-L1, proteins involved in apoptosis induction and inhibition of TCR signaling, and of BAFF and APRIL mRNAs, two B-cell growth factors. Interestingly, it was observed that IL-21, which plays a critical role in regulatory B cell differentiation, was significantly increased in B220+/IL-21+ in in vivo infections. This is striking since the secretion of IL-21 is associated with T helper follicular cells. Furthermore, trypomastigote-stimulated B-cell conditioned medium dramatically reduced the proliferation and increased the apoptotic rate on CD3/CD28 activated CD4+ T cells, suggesting the development of effective regulatory B cells. In this condition, CD4+ T cells showed a marked decrease in proliferation and viability with marginal IL-2 or IFNγ secretion, which is counterproductive with an efficient immune response against T. cruzi. Altogether, our results show that B lymphocytes stimulated with trypomastigotes adopt a particular phenotype that exerts a strong regulation of this T cell compartment by inducing apoptosis, arresting cell division, and affecting the developing of a proinflammatory response.

2002 ◽  
Vol 9 (3) ◽  
pp. 169-172 ◽  
Author(s):  
Nobuo Sakaguchi ◽  
Satoru Fujimura ◽  
Kazuhiko Kuwahara

Adaptive immunity is dependent on proliferation of antigen-driven B cells for clonal expansion in germinal centers (GCs) against T cell-dependent antigens (TD-Ag), accompanied with somatic hypermutation of variable-region gene and class switching of B cell antigen receptors. To study molecular mechanisms for B cell differentiation in GCs, we have identified and studied a 210 kDa GANP protein expressed in GC-B cells. GANP has domains for MCM3-binding and RNA-primase activities and is selectively up-regulated in centrocytes surrounded with follicular dendritic cells (FDCs) upon immunization with TD-Agin vivoand in B cells stimulated with anti-CD40 monoclonal antibodyin vitro, which suggested that GANP plays a certain important role in the maturation of immunoglobulin or selection of B cells in GC during the immune response to TD-Ag. Since this up-regulation has not been detected in T cells in GCs and in Concanavalin A-stimulated T cellsin vitro, selective function of GANP molecule on B cell proliferation and differentiation might exist.


Blood ◽  
1997 ◽  
Vol 89 (8) ◽  
pp. 2901-2908 ◽  
Author(s):  
Asimah Rafi ◽  
Mitzi Nagarkatti ◽  
Prakash S. Nagarkatti

Abstract CD44 is a widely distributed cell surface glycoprotein whose principal ligand has been identified as hyaluronic acid (HA), a major component of the extracellular matrix (ECM). Recent studies have demonstrated that activation through CD44 leads to induction of effector function in T cells and macrophages. In the current study, we investigated whether HA or monoclonal antibodies (MoAbs) against CD44 would induce a proliferative response in mouse lymphocytes. Spleen cells from normal and nude, but not severe combined immunodeficient mice, exhibited strong proliferative responsiveness to stimulation with soluble HA or anti-CD44 MoAbs. Furthermore, purified B cells, but not T cells, were found to respond to HA. HA was unable to stimulate T cells even in the presence of antigen presenting cells (APC) and was unable to act as a costimulus in the presence of mitogenic or submitogenic concentrations of anti-CD3 MoAbs. In contrast, stimulation of B cells with HA in vitro, led to B-cell differentiation as measured by production of IgM antibodies in addition to increased expression of CD44 and decreased levels of CD45R. The fact that the B cells were responding directly to HA through its binding to CD44 and not to any contaminants or endotoxins was demonstrated by the fact that F(ab)2 fragments of anti-CD44 MoAbs or soluble CD44 fusion proteins could significantly inhibit the HA-induced proliferation of B cells. Also, HA-induced proliferation of B cells was not affected by the addition of polymixin B, and B cells from lipopolysaccharide (LPS)-unresponsive C3H/HeJ strain responded strongly to stimulation with HA. Furthermore, HA, but not chondroitin-sulfate, another major component of the ECM, induced B-cell activation. It was also noted that injection of HA intraperitoneally, triggered splenic B cell proliferation in vivo. Together, the current study demonstrates that interaction between HA and CD44 can regulate murine B-cell effector functions and that such interactions may play a critical role during normal or autoimmune responsiveness of B cells.


2022 ◽  
Vol 11 (1) ◽  
pp. 270
Author(s):  
Martina Hinterleitner ◽  
Clemens Hinterleitner ◽  
Elke Malenke ◽  
Birgit Federmann ◽  
Ursula Holzer ◽  
...  

Immune cell reconstitution after stem cell transplantation is allocated over several stages. Whereas cells mediating innate immunity recover rapidly, adaptive immune cells, including T and B cells, recover slowly over several months. In this study we investigated kinetics and reconstitution of de novo B cell formation in patients receiving CD3 and CD19 depleted haploidentical stem cell transplantation with additional in vivo T cell depletion with monoclonal anti-CD3 antibody. This model enables a detailed in vivo evaluation of hierarchy and attribution of defined lymphocyte populations without skewing by mTOR- or NFAT-inhibitors. As expected CD3+ T cells and their subsets had delayed reconstitution (<100 cells/μL at day +90). Well defined CD19+ B lymphocytes of naïve and memory phenotype were detected at day +60. Remarkably, we observed a very early reconstitution of antibody-secreting cells (ASC) at day +14. These ASC carried the HLA-haplotype of the donor and secreted the isotypes IgM and IgA more prevalent than IgG. They correlated with a population of CD19− CD27− CD38low/+ CD138− cells. Of note, reconstitution of this ASC occurred without detectable circulating T cells and before increase of BAFF or other B cell stimulating factors. In summary, we describe a rapid reconstitution of peripheral blood ASC after CD3 and CD19 depleted haploidentical stem cell transplantation, far preceding detection of naïve and memory type B cells. Incidence before T cell reconstitution and spontaneous secretion of immunoglobulins allocate these early ASC to innate immunity, eventually maintaining natural antibody levels.


1995 ◽  
Vol 181 (4) ◽  
pp. 1399-1409 ◽  
Author(s):  
S K Bhatia ◽  
L T Tygrett ◽  
K H Grabstein ◽  
T J Waldschmidt

A number of previous studies have suggested a key role for interleukin 7 (IL-7) in the maturation of T lymphocytes. To better assess the function of IL-7 in lymphopoiesis, we have deprived mice of IL-7 in vivo by long-term administration of a neutralizing anti-IL-7 antibody. In a previous report (Grabstein, K. H., T. J. Waldschmidt, F. D. Finkelman, B. W. Hess, A. R. Alpert, N. E. Boiani, A. E. Namen, and P. J. Morrissey. 1993. J. Exp. Med. 178:257-264), we used this system to demonstrate the critical role of IL-7 in B cell maturation. After a brief period of anti-IL-7 treatment, most of the pro-B cells and all of the pre-B and immature B cells were depleted from the bone marrow. In the present report, we have injected anti-IL-7 antibody for periods of up to 12 wk to determine the effect of in vivo IL-7 deprivation on the thymus. The results demonstrate a &gt; 99% reduction in thymic cellularity after extended periods of antibody administration. Examination of thymic CD4- and CD8- defined subsets revealed that, on a proportional basis, the CD4+, CD8+ subset was most depleted, the CD4 and CD8 single positive cells remained essentially unchanged, and the CD4-, CD8- compartment actually increased to approximately 50% of the thymus. Further examination of the double negative thymocytes demonstrated that IL-7 deprivation did, indeed, deplete the CD3-, CD4-, CD8- precursors, with expansion of this subset being interupted at the CD44+, CD25+ stage. The proportional increase in the CD4-, CD8- compartment was found to be due to an accumulation of CD3+, T cell receptor alpha, beta + double negative T cells. Additional analysis revealed that anti-IL-7 treatment suppressed the audition/selection process of T cells, as shown by a significant reduction of single positive cells expressing CD69 and heat stable antigen. Finally, the effects of IL-7 deprivation on the thymus were found to be reversible, with a normal pattern of thymic subsets returning 4 wk after cessation of treatment. The present results thus indicate a central role for IL-7 in the maturation of thymic-derived T cells.


1988 ◽  
Vol 167 (4) ◽  
pp. 1350-1363 ◽  
Author(s):  
W H Boom ◽  
D Liano ◽  
A K Abbas

To compare the helper function of murine T cell clones that secrete IL-2 and IFN-gamma (Th1 cells) or IL-4 and IL-5 (Th2), purified resting B cells were stimulated with F(ab')2 rabbit anti-mouse Ig (RAMG) and rabbit Ig-specific, class II MHC-restricted cloned T cells belonging to the two subsets. Both Th2 clones examined induced strong proliferative responses of B cells in the presence of RAMG, as well as the secretion of IgM and IgG1 antibodies. In contrast, the Th1 clones tested failed to stimulate B cell growth or antibody secretion. Th2-mediated B cell activation was dependent on IL-4 and IL-5, and was also inhibited by IFN-gamma or IFN-gamma produced by Th1 cells present in the same cultures. However, the failure of Th1 cells to help resting B cells could not be reversed with neutralizing anti-IFN-gamma antibody. In addition to this inhibitory effect, IFN-gamma was required for the secretion of IgG2a antibody, particularly when B cells were stimulated with polyclonal activators such as LPS. Finally, both sets of T cell clones secreted lymphokines when stimulated with purified B cells and RAMG. These experiments demonstrate that T cells that differ in lymphokine production also differ in their ability to help B cells as a result of cognate interactions at low concentrations of antigens. Moreover, IL-4, IL-5, and IFN-gamma serve different roles in the T cell-dependent proliferative and differentiative responses of resting B lymphocytes.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2668-2668
Author(s):  
Abdul Tawab ◽  
Yoshiyuki Takahashi ◽  
Childs Richard ◽  
Kurlander J. Roger

Abstract In vitro stimulation of human peripheral blood B cells with recombinant IL-4 and CD40 ligand (CD40L) markedly increases their expression of MHC and costimulatory molecules, thus enhancing antigenic peptide presentation to T cells. Because these cells proliferate extensively in vitro (unlike monocytes or dendritic cells), they represent a promising and convenient reagent for the generation and maintenance of antigen-specific T cells for use in a variety of experimental or therapeutic settings. However, the impact of this type of B cell APC on cytokine production by responder T cells has hitherto not been examined. To address this issue, we stimulated normal human T cells with either allogeneic B cells (generated in vitro) or with MNCs obtained from the same donor. After 7 days, T cells were washed and re-challenged with the same APCs. The resulting alloreactive cytokine response was measured using quantitative ELISPOT methods and expressed as the frequencies of IFN-γ, IL-4, and IL-5 producing cells per thousand responder cells added. B cell- and MNC-primed cell lines both produced vigorous lymphokine responses, but B cell-stimulated T cells consistently produced more IL-5 spots (mean of 265 vs. 98/1000 responders, p<0.002) and fewer IFN-γ spots (163 vs 386/1000 cells, p<0.005) than MNC-stimulated cells. Further, the ratio of IFN-γ to IL-5 spots was almost ten-fold lower in B cell-stimulated cultures compared to MNC-induced cultures (0.67 vs. 5.2, p<0.001). ELISPOT studies assessing the ratio of IFN-γ to IL-4 spots and ELISA assays comparing IFN-γ and IL-5 levels from culture supernatants demonstrated the same pattern of marked type 2 skewing by B cells. This pattern was unaffected by the presence of anti-IL-4 antibody suggesting type 2 skewing was not mediated by IL-4. Cytokine skewing produced by B cells or MNC could be partially reversed by swapping MNC and B cells during re-stimulation on day 7, but this plasticity was markedly reduced after 3 (weekly) cycles of B cell or MNC re-stimulation in vitro. Type 2 skewing by B cells was enhanced when monocytes were removed from responder T cell populations by either depleting CD14+ positive cells or by positive selection of T cells prior to stimulation. In contrast, type 2 polarization could be prevented using recombinant IL-12. Not all cells of B-cell origin share the same propensity to type 2 skewing observed with IL-4/CD40L-stimulated B cells; under identical conditions, EBV-transformed B cells stimulated alloimmune T cells to produce a strong type 1 cytokine response comparable to that produced by MNCs. In summary, IL-4/CD40L-stimulated B cells strongly promote a type 2 T cell response during primary alloimmune challenge; this skewing can become fixed after repeated B cell stimulation. Investigators using these cells as APC should be aware of this potential phenomenon, particularly during primary T cell responses. It is also important to consider the factors described above that may exacerbate or ameliorate this effect.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4352-4352
Author(s):  
Julia Winkler ◽  
Michael Mach ◽  
Juergen Zingsem ◽  
Volker Weisbach ◽  
Andreas Mackensen ◽  
...  

Abstract Abstract 4352 Background and objectives: We have recently shown that memory B-lymphocytes from murine CMV immune donor animals adoptively transferred into immunodeficient mice were highly effective in protecting from a viral infection indicating a therapeutic potential of virus specific memory B-cells. These preclinical data provided evidence that a cell-based strategy supporting the humoral immune response might be effective in a clinical setting of post-HSCT immunodeficiency (Klenovsek et al., 2007, Blood 110: 3472–9). As adoptive transfer of B-cells has not been used before in a clinical setting, it is necessary to establish a technology for the generation of GMP-grade B-cell products. Methods: Starting from the leukapheresis of healthy donors, B-cells were purified by two different separation strategies using GMP-grade microbeads and the CliniMACS∧TM device. A one-step protocol was used for positive enrichment of B-lymphocytes with anti-CD19 microbeads. In a two-step enrichment protocol, first T-lymphocytes were depleted by anti-CD3 microbeads and the remaining fraction was positively selected by anti-CD19 microbeads. Results: The leukapheresis contained a mean of 9.0×10∧8 CD19-positive B-cells (4.5–12.4 ×10∧8). After the one-step positive purification strategy a mean purity of CD20∧+ B-lymphocytes of 78.1% with a recovery of 32–41% was obtained. With the two-step T-cell depletion/B-cell enrichment protocol we achieved a mean purity of 96.4 % (93.4–97.8%) with a slightly lower recovery of 14–37%. The absolute B-cell numbers obtained in the product were 1.3 to 4.0 ×10∧8 and 1.7 to 2.6 ×10∧8 for the one-step positive enrichment and the two-step protocol, respectively. Importantly, the absolute number of T-cells was lower in cell products after the two-step protocol (0.1 to 0.9 ×10∧6 T-cells) as compared to the one-step positive CD19-enrichment (1.6 to 3.4 ×10∧6 T-cells). Assuming a patient with 70 kg body weight, the B-cell products obtained after the combined CD3-depletion and CD19-enrichment contained less then 4×10∧4 T-lymphocytes/kg bodyweight, which is a critical threshold number of T-cells in haploidentical HSCT. The B-cell products showed antibody production after in vitro stimulation in a limiting dilution assay and showed excellent viability after cryopreservation. Conclusions: A GMP-grade B-cell product can be obtained with high purity and very low T-cell contamination using the two-step enrichment protocol based on CliniMACS∧TM technology. (Supported by BayImmuNet) Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 119-119
Author(s):  
Rita Simone ◽  
Sonia Marsilio ◽  
Piers E.M. Patten ◽  
Gerardo Ferrer ◽  
Shih-Shih Chen ◽  
...  

Abstract Lenalidomide (Revlimid®), a thalidomide analogue, is an orally administered second generation immunomodulator with anti-angiogenic and anti-neoplastic properties. Initial studies treating patients with chronic lymphocytic leukemia (CLL) suggest that lenalidomide can have considerable efficacy and that its mode of action is mainly indirect, affecting non-malignant cells in the microenvironment, in particular T lymphocytes. Because a recently described xenograft model for CLL has highlighted the importance of CLL-derived, autologous T cells in promoting leukemic B-cell engraftment and growth in vivo, we have studied the influence of lenalidomide on the expansion of CLL B- and T-lymphocytes in this model. After an initial 12 day culture of FACS-isolated CLL-derived T cells with or without anti-CD3/CD28 beads plus IL-2 (30 IU/ml), T lymphocytes were transferred into alymphoid NSG mice via the retro-orbital plexus (day 0). On day 7, CLL cells were delivered retro-orbitally. These recipient animals are referred to as “T + PBMC mice”. Mice that did not receive T cells on day 0 but were given CLL PBMCs at day 7, with or without lenalidomide, served as controls (“PBMC only mice”). Recipient mice received lenalidomide (10mg/kg/day) or vehicle control daily by gavage starting at day 0. All mice were sacrificed at day 28 (28 days after T-cell and 21 days after B-cell transfer), and blood, spleen, and bone marrow were collected. On this material, four analyses were performed: [1] level of human CD45+ cell engraftment; [2] numbers and types of CLL-derived T cells; [3] numbers of CLL B cells; and [4] levels of cytokines reflective of Th1 and Th2 immune responses. There was a clear enhancement in human hematopoietic (CD45+) cell engraftment in those mice exposed to lenalidomide. This was most marked for the PBMC only mice (vehicle: 10.64%; lenalidomide: 38.53%), although it was also evident for T + PBMC mice (vehicle: 55.96%; lenalidomide: 69.65%). T-cell phenotyping was carried out, before and after cell culture and also at sacrifice. Prior to culture, CLL samples contained on average ∼96% CD5+CD19+ cells and ∼3% CD5+CD19- cells; for the latter, ∼67% were CD4+ and ∼33% CD8+. After 12-day culture, these percentages remained largely unchanged. However, the numbers and types of T cells recovered from the spleens at sacrifice were quite different after in vivo exposure to lenalidomide. For the PBMC only, the percentages of CD4+ and CD8+ cells in the spleens differed somewhat based on lenalidomide exposure (CD4: Vehicle 86% vs. Lenalidomide 61%; CD8: Vehicle 10% vs. Lenalidomide 28%). However, this change was dramatic for the T + PBMC mice (CD4: Vehicle 64.1% vs. Lenalidomide 28.9%; CD8: Vehicle 34% vs. Lenalidomide 62%). Furthermore, when the CD8+ cells from these animals were subsetted based on antigen-experience and function, it appeared that lenalidomide exposure had led to the outgrowth of a greater number of effector memory (CD45RO+ CD62L-) than central memory (CD45RO+ CD62L+) T-cells. For CLL-derived B cells, the numbers differed, based not only on lenalidomide exposure but also on prior in vitro activation. Specifically, in PBMC only mice, the addition of lenalidomide led to increased numbers of CLL B cells in the spleen (Vehicle: 7.81% vs. Lenalidomide: 14%). Conversely, in the T + PBMC mice, the numbers of B cells decreased (Vehicle: 2.36% vs. Lenalidomide: 0.34%). An analysis of Th1 and Th2-related cytokines in the plasmas of the mice at sacrifice revealed a fall in IL-4, IL-5, and IL-10 and a marked increase in IFNg, consistent with a Th2 to Th1 transition. The above data suggest that administration of lenalidomide permits greater engraftment of human hematopoietic cells in alymphoid mice. Although this enhancement involves all members of the hematopoietic lineage, T cells, in particular CD8+ effector memory T cells, emerge in excess over time. This CD8 expansion is associated with diminished levels of CLL B cells suggesting that the decrease is due to T-cell mediated cytolysis. In contrast, in the absence of prior T-cell activation, CLL T cells appear to support better CLL B-cell growth. These findings suggest that lenalidomide alters B-cell expansion in vivo depending on the activation and differentiation state of the autologous T-cell compartment. They also implicate the generation of cytolytic T cells as one mechanism whereby lenalidomide leads to clinical improvement in CLL. Disclosures: Allen: Celgene Corporation: Honoraria.


2013 ◽  
Vol 81 (6) ◽  
pp. 2112-2122 ◽  
Author(s):  
Guoquan Zhang ◽  
Ying Peng ◽  
Laura Schoenlaub ◽  
Alexandra Elliott ◽  
William Mitchell ◽  
...  

ABSTRACTTo further understand the mechanisms of formalin-inactivatedCoxiella burnetiiphase I (PI) vaccine (PIV)-induced protection, we examined if B cell, T cell, CD4+T cell, or CD8+T cell deficiency in mice significantly affects the ability of PIV to confer protection against aC. burnetiiinfection. Interestingly, compared to wild-type (WT) mice, PIV conferred comparable levels of protection in CD4+T cell- or CD8+T cell-deficient mice and partial protection in T cell-deficient mice but did not provide measurable protection in B cell-deficient mice. These results suggest that PIV-induced protection depends on B cells. In addition, anti-PI-specific IgM was the major detectable antibody (Ab) in immune sera from PIV-vaccinated CD4+T cell-deficient mice, and passive transfer of immune sera from PIV-vaccinated CD4+T cell-deficient mice conferred significant protection. These results suggest that T cell-independent anti-PI-specific IgM may contribute to PIV-induced protection. Our results also suggested that PIV-induced protection may not depend on complement activation and Fc receptor-mediated effector functions. Furthermore, our results demonstrated that both IgM and IgG from PIV-vaccinated WT mouse sera were able to inhibitC. burnetiiinfectionin vivo, but only IgM from PIV-vaccinated CD4+T cell-deficient mouse sera inhibitedC. burnetiiinfection. Collectively, these findings suggest that PIV-induced protection depends on B cells to produce protective IgM and IgG and that T cell-independent anti-PI-specific IgM may play a critical role in PIV-induced protection againstC. burnetiiinfection.


1972 ◽  
Vol 136 (4) ◽  
pp. 737-760 ◽  
Author(s):  
Marc Feldmann

The mechanism of interaction of T and B lymphocytes was investigated in an in vitro hapten carrier system using culture chambers with two compartments separated by a cell impermeable nucleopore membrane. Because specific cell interaction occurred efficiently across this membrane, contact of T and B lymphocytes was not essential for cooperation which must have been mediated by a subcellular component or "factor." By using different lymphoid cell populations in the lower culture chamber and activated thymus cells in the upper chamber (with antigen present in both), it was found that the antigen-specific mediator acted indirectly on B cells, through the agency of macrophages. Macrophages which had been cultured in the presence of activated T cells and antigen acquired the capacity to specifically induce antibody responses in B cell-containing lymphoid populations. Trypsinization of these macrophages inhibited their capacity to induce immune responses, indicating that the mediator of cell cooperation is membrane bound. By using antisera to both the haptenic and carrier determinants of the antigen as blocking reagents, it was demonstrated that the whole antigen molecule was present on the surface of macrophages which had been exposed to activated T cells and antigen. Because specifically activated T cells were essential a component of the antigen-specific mediator must be derived from these cells. By using anti-immunoglobulin sera as inhibitors of the binding of the mediator to macrophages, the T cell component was indeed found to contain both κ- and µ-chains and was thus presumably a T cell-derived immunoglobulin. It was proposed that cell cooperation is mediated by complexes of T cell IgM and antigen, bound to the surface of macrophage-like cells, forming a lattice of appropriately spaced antigenic determinants. B cells become immunized by interacting with this surface. With this mechanism of cell cooperation, the actual pattern of antigen-B cell receptor interactions in immunization would be the same with both thymus-dependent and independent antigens. An essential feature of the proposed mechanism of cell cooperation is that macrophage-B cell interaction must occur at an early stage of the antibody response, a concept which is supported by many lines of evidence. Furthermore this mechanism of cell interaction can be elaborated to explain certain phenomena such as the highly immunogenic macrophage-bound antigen, antigenic competition, the distinction between immunity and tolerance in B lymphocytes, and the possible mediation of tolerance by T lymphocytes.


Sign in / Sign up

Export Citation Format

Share Document