scholarly journals The effect of in vivo IL-7 deprivation on T cell maturation.

1995 ◽  
Vol 181 (4) ◽  
pp. 1399-1409 ◽  
Author(s):  
S K Bhatia ◽  
L T Tygrett ◽  
K H Grabstein ◽  
T J Waldschmidt

A number of previous studies have suggested a key role for interleukin 7 (IL-7) in the maturation of T lymphocytes. To better assess the function of IL-7 in lymphopoiesis, we have deprived mice of IL-7 in vivo by long-term administration of a neutralizing anti-IL-7 antibody. In a previous report (Grabstein, K. H., T. J. Waldschmidt, F. D. Finkelman, B. W. Hess, A. R. Alpert, N. E. Boiani, A. E. Namen, and P. J. Morrissey. 1993. J. Exp. Med. 178:257-264), we used this system to demonstrate the critical role of IL-7 in B cell maturation. After a brief period of anti-IL-7 treatment, most of the pro-B cells and all of the pre-B and immature B cells were depleted from the bone marrow. In the present report, we have injected anti-IL-7 antibody for periods of up to 12 wk to determine the effect of in vivo IL-7 deprivation on the thymus. The results demonstrate a > 99% reduction in thymic cellularity after extended periods of antibody administration. Examination of thymic CD4- and CD8- defined subsets revealed that, on a proportional basis, the CD4+, CD8+ subset was most depleted, the CD4 and CD8 single positive cells remained essentially unchanged, and the CD4-, CD8- compartment actually increased to approximately 50% of the thymus. Further examination of the double negative thymocytes demonstrated that IL-7 deprivation did, indeed, deplete the CD3-, CD4-, CD8- precursors, with expansion of this subset being interupted at the CD44+, CD25+ stage. The proportional increase in the CD4-, CD8- compartment was found to be due to an accumulation of CD3+, T cell receptor alpha, beta + double negative T cells. Additional analysis revealed that anti-IL-7 treatment suppressed the audition/selection process of T cells, as shown by a significant reduction of single positive cells expressing CD69 and heat stable antigen. Finally, the effects of IL-7 deprivation on the thymus were found to be reversible, with a normal pattern of thymic subsets returning 4 wk after cessation of treatment. The present results thus indicate a central role for IL-7 in the maturation of thymic-derived T cells.

1994 ◽  
Vol 179 (1) ◽  
pp. 177-184 ◽  
Author(s):  
M R Hough ◽  
F Takei ◽  
R K Humphries ◽  
R Kay

Heat-stable antigen (HSA) is a small, glycosyl phosphatidylinositol-anchored protein that can act as a costimulatory molecule for antigen-dependent activation of helper T cells. In addition to being expressed on antigen-presenting B cells, HSA is also expressed during the initial stages of T cell development in the thymus. HSA levels are very high on immature CD4-, CD8- double negative thymocytes, but are reduced on CD4+, CD8+ double positive cells undergoing selection in the thymus, and are entirely eliminated when these cells differentiate into immunologically competent CD4+ or CD8+ single positive T cells. To examine the potential roles of this molecule in T cell development and selection, we generated transgenic mice in which HSA was highly expressed on all classes of thymocytes. The consequence of deregulated HSA expression was a pronounced reduction in the numbers of double positive and single positive thymocytes, whereas the numbers of their double negative precursors were largely unaffected. These results demonstrate that downregulation of HSA expression at the double positive stage is a critical event in thymocyte development. The depletion of thymocytes resulting from HSA overexpression begins at the same time as the onset of negative selection, suggesting that HSA may provide signals that contribute to determining the efficiency of this process.


Author(s):  
Martín Somoza ◽  
Adriano Bertelli ◽  
Cecilia A. Pratto ◽  
Ramiro E. Verdun ◽  
Oscar Campetella ◽  
...  

Trypanosoma cruzi infection induces a polyclonal B cell proliferative response characterized by maturation to plasma cells, excessive generation of germinal centers, and secretion of parasite-unrelated antibodies. Although traditionally reduced to the humoral response, several infectious and non-infectious models revealed that B lymphocytes could regulate and play crucial roles in cellular responses. Here, we analyze the trypomastigote-induced effect on B cells, their effects on CD4+ T cells, and their correlation with in vivo findings. The trypomastigotes were able to induce the proliferation and the production of IL-10 or IL-6 of naïve B cells in co-culture experiments. Also, we found that IL-10-producing B220lo cells were elicited in vivo. We also found up-regulated expression of FasL and PD-L1, proteins involved in apoptosis induction and inhibition of TCR signaling, and of BAFF and APRIL mRNAs, two B-cell growth factors. Interestingly, it was observed that IL-21, which plays a critical role in regulatory B cell differentiation, was significantly increased in B220+/IL-21+ in in vivo infections. This is striking since the secretion of IL-21 is associated with T helper follicular cells. Furthermore, trypomastigote-stimulated B-cell conditioned medium dramatically reduced the proliferation and increased the apoptotic rate on CD3/CD28 activated CD4+ T cells, suggesting the development of effective regulatory B cells. In this condition, CD4+ T cells showed a marked decrease in proliferation and viability with marginal IL-2 or IFNγ secretion, which is counterproductive with an efficient immune response against T. cruzi. Altogether, our results show that B lymphocytes stimulated with trypomastigotes adopt a particular phenotype that exerts a strong regulation of this T cell compartment by inducing apoptosis, arresting cell division, and affecting the developing of a proinflammatory response.


2009 ◽  
Vol 206 (2) ◽  
pp. 421-434 ◽  
Author(s):  
Randall H. Friedline ◽  
David S. Brown ◽  
Hai Nguyen ◽  
Hardy Kornfeld ◽  
JinHee Lee ◽  
...  

Cytotoxic T lymphocyte antigen-4 (CTLA-4) plays a critical role in negatively regulating T cell responses and has also been implicated in the development and function of natural FOXP3+ regulatory T cells. CTLA-4–deficient mice develop fatal, early onset lymphoproliferative disease. However, chimeric mice containing both CTLA-4–deficient and –sufficient bone marrow (BM)–derived cells do not develop disease, indicating that CTLA-4 can act in trans to maintain T cell self-tolerance. Using genetically mixed blastocyst and BM chimaeras as well as in vivo T cell transfer systems, we demonstrate that in vivo regulation of Ctla4−/− T cells in trans by CTLA-4–sufficient T cells is a reversible process that requires the persistent presence of FOXP3+ regulatory T cells with a diverse TCR repertoire. Based on gene expression studies, the regulatory T cells do not appear to act directly on T cells, suggesting they may instead modulate the stimulatory activities of antigen-presenting cells. These results demonstrate that CTLA-4 is absolutely required for FOXP3+ regulatory T cell function in vivo.


1983 ◽  
Vol 158 (3) ◽  
pp. 649-669 ◽  
Author(s):  
H Kawanishi ◽  
L Saltzman ◽  
W Strober

Our previous studies indicated that cloned T cells obtained from Peyer's patches (PP) (Lyt-1+, 2-, Ia+, and H-2K/D+) evoked immunoglobulin (Ig) class switching of PP B cells from sIgM to sIgA cells in vitro; however, these switch T cells could not in themselves provide optimal help for the differentiation of postswitch sIgA-bearing PP B cells to IgA-secreting cells. Thus, in the present report we described studies focused on mechanisms regulating terminal differentiation of the postswitch PP sIgA-bearing B cells. First, to explore the effect of T cell-derived B cell differentiation factor(s) (BCDF) and macrophage factor(s) (MF) on the terminal maturation of PP B cells, LPS-stimulated PP B cells were co-cultured for 7 d with cloned T cells in the presence or absence of the above factors. In the absence of PP cloned T cells the BCDF and MF had only a modest effect on IgA production, whereas in the presence of PP, but not spleen cloned T cells, IgA production was increased. Next, to investigate the effect of T cells derived from a gut-associated lymphoid tissue (GALT), mesenteric lymph nodes (MLN), as well as from spleen on terminal differentiation of postswitch sIgA PP B cells, LPS-driven PP B cells were precultured with the cloned T cells to induce a switch to sIgA, and subsequently cultured with MLN or spleen T cells or a Lyt-2+-depleted T cell subset in the presence of a T-dependent polyclonal mitogen, staphylococcal protein A. Alternatively, in the second culture period BCDF alone was added, instead of T cells and protein A. Here it was found that B cells pre-exposed to switch T cells from PP, but not spleen, were induced to produce greatly increased amounts of IgA in the presence of protein A and T cells or a Lyt-2+-depleted T cell subset as well as in the presence of BCDF alone. Furthermore, in the presence of BCDF alone many B cells expressed cytoplasmic IgA. These observations strongly support the view that the terminal differentiation of postswitch sIgA B cells is governed by helper T cells and macrophages, or factors derived from such cells. Such cells or factors do not affect preswitch B cells.


2014 ◽  
Vol 98 ◽  
pp. 391
Author(s):  
W. Li ◽  
X. Zhao ◽  
Y. Tian ◽  
W. Shi ◽  
X. Li ◽  
...  

Blood ◽  
1995 ◽  
Vol 86 (5) ◽  
pp. 1850-1860 ◽  
Author(s):  
TA Moore ◽  
A Zlotnik

The earliest steps of intrathymic differentiation recently have been elucidated. It has been reported that both CD4lo (CD44+ CD25- c-kit+ CD3- CD4lo CD8-) and pro-T cells (CD44+ CD25+ c-kit+ CD3- CD4- CD8-, representing the next step in maturation) exhibit germline T-cell receptor beta and gamma loci, suggesting that neither population is exclusively committed to the T-cell lineage. Several groups have shown that CD4lo cells retain the capacity to generate multiple lymphoid lineages in vivo; however, the lineage commitment status of pro-T cells is unknown. To determine when T-cell lineage commitment occurs, we examined the ability of sorted CD4lo and pro-T cells to generate lymphoid lineage cells in vivo or in fetal thymic organ cultures (FTOCs). When intravenously injected into scid mice, CD4lo cells generated both T and B cells, whereas the progeny of pro-T cells contained T cells exclusively. Fetal thymic organ cultures repopulated with CD4lo cells contained both T and natural killer (NK) cells, whereas cultures repopulated with pro-T cells contained T cells almost exclusively. These observations strongly suggest that T-cell lineage commitment occurs during the transition of CD4lo to pro-T cells. Because it is likely that the thymic microenvironment plays a critical role in T-cell commitment, we compared the responses of CD4lo and pro-T cells to various cytokine combinations in vitro, as well as the ability of the cultured cells to repopulate organ cultures. Cytokine combinations that maintained T-cell repopulation potential for both CD4lo and pro-T cells were found. CD4lo cells proliferated best in response to the combination containing interleukin-1 (IL-1), IL-3, IL- 6, IL-7, and stem cell factor (SCF). Unlike CD4lo cells, pro-T cells were much more dependent upon IL-7 for proliferation and FTOC repopulation. However, combinations of cytokines lacking IL-7 were found that maintained the T-cell repopulating potential of pro-T cells, suggesting that, whereas this cytokine is clearly very important for normal pro-T cell function, it is not an absolute necessity during early T-cell expansion and differentiation.


2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A3.2-A4
Author(s):  
J Grün ◽  
I Piseddu ◽  
C Perleberg ◽  
N Röhrle ◽  
S Endres ◽  
...  

BackgroundUnmethylated CpG-DNA is a potent ligand for the endosomal Toll-like-receptor-9, important for the immune activation to pathogen-associated molecules.1 CpG and other TLR-ligands show effective immunotherapeutic capacities in cancer treatment by inducing an antitumorigenic immunity.2 They are able to reduce tumor progression by reduction of intratumoral secretion of the immunoregulating chemokine CCL223 and subsequent recruitment of immunosuppressive regulatory T cells (Treg), which express CCR4 the only so far known receptor for CCL22.4 Our recent work has shown that CCL22 secretion by dendritic cells (DC) in the lymph node, mediates tolerance by inducing DC-Treg contacts.5 Indeed, in the absence of CCL22, immune responses to vaccination were stronger and resulted in tumor rejection.6 Therefore, we are aiming to investigate the effects of TLR-ligands on systemic CCL22 levels, elucidating all involved mechanisms to identify new targets for cancer immunotherapy.Materials and MethodsT, B and CD11c+ DCs of wildtype (wt) and RAG1-/- mice were isolated from splenocytes by magnetic-activated cell sorting for in vitro assays. Different co-cultures were incubated with CpG and GM-CSF, known as an CCL22 inducer.5 For in vivo experiments, wt mice were treated with CpG, R484 or poly(I:C) alone and in combination with GM-CSF. CCL22-levels in a number of organs were analyzed.ResultsAnalyzing the different immune cell compartments in vitro, we found that DCs in whole splenocytes secrete CCL22 during culture while DC cultured alone showed no CCL22 secretion. When treated with CpG, CCL22-levels were reduced in splenocytes, while it was induced in DC culture alone. The same results were seen when RAG splenocytes, that lack functional B and T cells, were cultured with CpG. CpG treated B cells were able to suppress CCL22 secretion by DC unlike T cells alone. Co-cultures of T and B cells treated with CpG, however, induced the strongest CCL22 suppression in DC. In vivo, we could show that all TLR ligands tested reduced CCL22 in a number of organs significantly. Furthermore, CpG showed the strongest suppression of CCL22 even in the presence of the CCL22 inducer GM-CSF.5ConclusionsWe could show that B cells with T cells mediate CCL22 suppression by TLR ligands. The fact that CpG was able to reduce CCL22 levels even in the presence of the inducer GM-CSF demonstrates the potent CCL22 suppressive capacity of TLR ligands.ReferencesO’Neill LA, et al. The history of toll-like receptors – redefining innate immunity. Nat Rev Immunol 2013;13(6):453–60.Rothenfusser S, et al. Recent advances in immunostimulatory CpG oligonucleotides. Curr Opin Mol Ther 2003;5(2):98–106.Wang S, et al. Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8+ T cells. Proc Natl Acad Sci U S A 2016;113(46): E7240–E7249.Rapp M, et al. CCL22 controls immunity by promoting regulatory T cell communication with dendritic cells in lymph nodes. J Exp Med 2019;216(5):1170–1181.Piseddu I, et al. Constitutive expression of CCL22 is mediated by T cell-derived GM-CSF. J Immunol 2020;205(8):2056–2065.Anz D, et al. Suppression of intratumoral CCL22 by type i interferon inhibits migration of regulatory T cells and blocks cancer progression. Cancer Res 2015;75(21):4483–93.Disclosure InformationJ. Grün: None. I. Piseddu: None. C. Perleberg: None. N. Röhrle: None. S. Endres: None. D. Anz: None.


2022 ◽  
Vol 11 (1) ◽  
pp. 270
Author(s):  
Martina Hinterleitner ◽  
Clemens Hinterleitner ◽  
Elke Malenke ◽  
Birgit Federmann ◽  
Ursula Holzer ◽  
...  

Immune cell reconstitution after stem cell transplantation is allocated over several stages. Whereas cells mediating innate immunity recover rapidly, adaptive immune cells, including T and B cells, recover slowly over several months. In this study we investigated kinetics and reconstitution of de novo B cell formation in patients receiving CD3 and CD19 depleted haploidentical stem cell transplantation with additional in vivo T cell depletion with monoclonal anti-CD3 antibody. This model enables a detailed in vivo evaluation of hierarchy and attribution of defined lymphocyte populations without skewing by mTOR- or NFAT-inhibitors. As expected CD3+ T cells and their subsets had delayed reconstitution (<100 cells/μL at day +90). Well defined CD19+ B lymphocytes of naïve and memory phenotype were detected at day +60. Remarkably, we observed a very early reconstitution of antibody-secreting cells (ASC) at day +14. These ASC carried the HLA-haplotype of the donor and secreted the isotypes IgM and IgA more prevalent than IgG. They correlated with a population of CD19− CD27− CD38low/+ CD138− cells. Of note, reconstitution of this ASC occurred without detectable circulating T cells and before increase of BAFF or other B cell stimulating factors. In summary, we describe a rapid reconstitution of peripheral blood ASC after CD3 and CD19 depleted haploidentical stem cell transplantation, far preceding detection of naïve and memory type B cells. Incidence before T cell reconstitution and spontaneous secretion of immunoglobulins allocate these early ASC to innate immunity, eventually maintaining natural antibody levels.


1981 ◽  
Vol 154 (1) ◽  
pp. 188-192 ◽  
Author(s):  
J Sprent ◽  
E A Lerner ◽  
J Bruce ◽  
F W Symington

(CBA x B6)F1 (Iak x Iab) T cells were activated to sheep erythrocytes in irradiated F1 mice in the presence of various monoclonal anti-Ia reagents and then tested for their capacity to collaborate with B cells from B10.BR (I-Ak, I-Ek) (kk), B10.A(4R) (kb), and B10 (bb) mice. Anti-I-Ak antibodies blocked the generation of help for B10.A(4R) B cells, but not B10.BR or B10 B cells. An anti-I-Ab antibody blocked help for B10 B cells, but not for B10.BR or B10.A(4R) B cells. An antibody (Y-17) specific for I-Ak/Ek and I-Ab/Ek molecules, but not for I-Ak or I-Ab molecules, failed to impair the generation of help for B10.BR, B10.A (4R), or B10 B cells. In marked contrast to injecting each antibody separately, a mixture of anti-I-Ak and anti-I-Ak,b/Ek (Y-17) antibodies virtually abolished the generation of help for B10.BR B cells. A mixture of anti-I-Ak and anti-I-Ab antibodies effectively blocked help for (4R x B10)F1 B cells, i.e., cells expressing hybrid I-A molecules. These two antibodies only marginally impaired help for (CBA x B6)F1 B cells. To block help for (CBA x B6)F1 B cells required selection in the presence of a cocktail of anti-I-Ak, anti-I-Ab, and anti-I-Ak,b/Ek antibodies. The implications of these findings are discussed.


1999 ◽  
Vol 190 (10) ◽  
pp. 1535-1540 ◽  
Author(s):  
Robert S. Mittler ◽  
Tina S. Bailey ◽  
Kerry Klussman ◽  
Mark D. Trailsmith ◽  
Michael K. Hoffmann

The 4-1BB receptor (CDw137), a member of the tumor necrosis factor receptor superfamily, has been shown to costimulate the activation of T cells. Here we show that anti–mouse 4-1BB monoclonal antibodies (mAbs) inhibit thymus-dependent antibody production by B cells. Injection of anti–4-1BB mAbs into mice being immunized with cellular or soluble protein antigens induced long-term anergy of antigen-specific T cells. The immune response to the type II T cell–independent antigen trinintrophenol-conjugated Ficoll, however, was not suppressed. Inhibition of humoral immunity occurred only when anti–4-1BB mAb was given within 1 wk after immunization. Anti–4-1BB inhibition was observed in mice lacking functional CD8+ T cells, indicating that CD8+ T cells were not required for the induction of anergy. Analysis of the requirements for the anti–4-1BB–mediated inhibition of humoral immunity revealed that suppression could not be adoptively transferred with T cells from anti–4-1BB–treated mice. Transfer of BALB/c splenic T cells from sheep red blood cell (SRBC)-immunized and anti–4-1BB–treated mice together with normal BALB/c B cells into C.B-17 severe combined immunodeficient mice failed to generate an anti-SRBC response. However, B cells from the SRBC-immunized, anti–4-1BB–treated BALB/c mice, together with normal naive T cells, exhibited a normal humoral immune response against SRBC after transfer, demonstrating that SRBC-specific B cells were left unaffected by anti–4-1BB mAbs.


Sign in / Sign up

Export Citation Format

Share Document