scholarly journals EEG-Based Auditory Attention Detection and Its Possible Future Applications for Passive BCI

2021 ◽  
Vol 3 ◽  
Author(s):  
Joan Belo ◽  
Maureen Clerc ◽  
Daniele Schön

The ability to discriminate and attend one specific sound source in a complex auditory environment is a fundamental skill for efficient communication. Indeed, it allows us to follow a family conversation or discuss with a friend in a bar. This ability is challenged in hearing-impaired individuals and more precisely in those with a cochlear implant (CI). Indeed, due to the limited spectral resolution of the implant, auditory perception remains quite poor in a noisy environment or in presence of simultaneous auditory sources. Recent methodological advances allow now to detect, on the basis of neural signals, which auditory stream within a set of multiple concurrent streams an individual is attending to. This approach, called EEG-based auditory attention detection (AAD), is based on fundamental research findings demonstrating that, in a multi speech scenario, cortical tracking of the envelope of the attended speech is enhanced compared to the unattended speech. Following these findings, other studies showed that it is possible to use EEG/MEG (Electroencephalography/Magnetoencephalography) to explore auditory attention during speech listening in a Cocktail-party-like scenario. Overall, these findings make it possible to conceive next-generation hearing aids combining customary technology and AAD. Importantly, AAD has also a great potential in the context of passive BCI, in the educational context as well as in the context of interactive music performances. In this mini review, we firstly present the different approaches of AAD and the main limitations of the global concept. We then expose its potential applications in the world of non-clinical passive BCI.

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 531
Author(s):  
Seung-Cheol Baek ◽  
Jae Ho Chung ◽  
Yoonseob Lim

Auditory attention detection (AAD) is the tracking of a sound source to which a listener is attending based on neural signals. Despite expectation for the applicability of AAD in real-life, most AAD research has been conducted on recorded electroencephalograms (EEGs), which is far from online implementation. In the present study, we attempted to propose an online AAD model and to implement it on a streaming EEG. The proposed model was devised by introducing a sliding window into the linear decoder model and was simulated using two datasets obtained from separate experiments to evaluate the feasibility. After simulation, the online model was constructed and evaluated based on the streaming EEG of an individual, acquired during a dichotomous listening experiment. Our model was able to detect the transient direction of a participant’s attention on the order of one second during the experiment and showed up to 70% average detection accuracy. We expect that the proposed online model could be applied to develop adaptive hearing aids or neurofeedback training for auditory attention and speech perception.


2020 ◽  
Vol 04 ◽  
Author(s):  
A. Guillermo Bracamonte

: Graphene as Organic material showed special attention due to their electronic and conductive properties. Moreover, its highly conjugated chemical structures and relative easy modification permitted varied design and control of targeted properties and applications. In addition, this Nanomaterial accompanied with pseudo Electromagnetic fields permitted photonics, electronics and Quantum interactions with their surrounding that generated new materials properties. In this context, this short Review, intends to discuss many of these studies related with new materials based on graphene for light and electronic interactions, conductions, and new modes of non-classical light generation. It should be highlighted that these new materials and metamaterials are currently in progress. For this reason it was showed and discussed some representative examples from Fundamental Research with Potential Applications as well as for their incorporations to real Advanced devices and miniaturized instrumentation. In this way, it was proposed this Special issue entitled “Design and synthesis of Hybrids Graphene based Metamaterials”, in order to open and share the knowledge of the Current State of the Art in this Multidisciplinary field.


1972 ◽  
Vol 37 (1) ◽  
pp. 113-117 ◽  
Author(s):  
Hedda Aufricht

A recent development in hearing aids, the contralateral routing of signals (CROS), makes it possible to provide amplification for persons with unilateral hearing loss. In 1967, a CROS eyeglass hearing aid was placed on government contract and made available to veterans. To study the efficiency of the CROS, a follow-up questionnaire was sent to 60 male veterans who had been fitted with this aid. All had demonstrated unilateral hearing losses, and the mean threshold for the speech frequencies (500–2000 Hz) in the good ear was 24 dB. The 54 replies (90%) indicated that 85% wore the aid, liked it, and derived benefit from it; 15% neither liked nor wore the aid. The CROS appeared to be most helpful in listening to conversational speech and at work, and most disturbing in a noisy environment. The complaints about the aid fell into major categories: 33% objected to its poor fit and construction and 11% were disturbed by speech distortion. The CROS aid has been a useful addition to the hearing-aid stock at the clinic reported here. It has expanded the program by providing amplification to veterans who could not be fitted with the conventional stock of aids.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 977 ◽  
Author(s):  
Tao Lyu ◽  
Lirong Song ◽  
Qiuwen Chen ◽  
Gang Pan

Eutrophication has become one of the major environmental issues of global concern due to the adverse effects on water quality, public health and ecosystem sustainability. Fundamental research on the restoration of eutrophic freshwaters, i.e., lakes and rivers, is crucial to support further evidence-based practical implementations. This Special Issue successfully brings together recent research findings from scientists in this field and assembles contributions on lake and river restoration. The 12 published papers can be classified into, and contribute to, three major aspects of this topic. Firstly, a background investigation into the migration of nutrients, and the characteristics of submerged biota, will guide and assist the understanding of the mechanisms of future restoration. Secondly, various restoration strategies, including control of both external and internal nutrients loading, are studied and evaluated. Thirdly, an evaluation of the field sites after restoration treatment is reported in order to support the selection of appropriate restoration approaches. This paper focuses on the current environmental issues related to lake and river restoration and has conducted a comprehensive bibliometric analysis in order to emphasise the fast-growing attention being paid to the research topic. The research questions and main conclusions from all papers are summarised to focus the attention toward how the presented studies aid gains in scientific knowledge, engineering experience and support for policymakers.


2018 ◽  
Vol 115 (7) ◽  
pp. E1391-E1400 ◽  
Author(s):  
Yihuang Chen ◽  
Zewei Wang ◽  
Yanjie He ◽  
Young Jun Yoon ◽  
Jaehan Jung ◽  
...  

The ability to dynamically organize functional nanoparticles (NPs) via the use of environmental triggers (temperature, pH, light, or solvent polarity) opens up important perspectives for rapid and convenient construction of a rich variety of complex assemblies and materials with new structures and functionalities. Here, we report an unconventional strategy for crafting stable hairy NPs with light-enabled reversible and reliable self-assembly and tunable optical properties. Central to our strategy is to judiciously design amphiphilic star-like diblock copolymers comprising inner hydrophilic blocks and outer hydrophobic photoresponsive blocks as nanoreactors to direct the synthesis of monodisperse plasmonic NPs intimately and permanently capped with photoresponsive polymers. The size and shape of hairy NPs can be precisely tailored by modulating the length of inner hydrophilic block of star-like diblock copolymers. The perpetual anchoring of photoresponsive polymers on the NP surface renders the attractive feature of self-assembly and disassembly of NPs on demand using light of different wavelengths, as revealed by tunable surface plasmon resonance absorption of NPs and the reversible transformation of NPs between their dispersed and aggregated states. The dye encapsulation/release studies manifested that such photoresponsive NPs may be exploited as smart guest molecule nanocarriers. By extension, the star-like block copolymer strategy enables the crafting of a family of stable stimuli-responsive NPs (e.g., temperature- or pH-sensitive polymer-capped magnetic, ferroelectric, upconversion, or semiconducting NPs) and their assemblies for fundamental research in self-assembly and crystallization kinetics of NPs as well as potential applications in optics, optoelectronics, magnetic technologies, sensory materials and devices, catalysis, nanotechnology, and biotechnology.


2005 ◽  
Vol 16 (10) ◽  
pp. 809-821 ◽  
Author(s):  
Rachel McArdle ◽  
Harvey B. Abrams ◽  
Theresa Hnath Chisolm

Both clinical and research findings support the effectiveness of frequency-modulated (FM) technology among individuals who continue to encounter significant communication problems despite the use of conventional hearing instruments. The use rate of FM devices throughout the nation, however, remains disappointingly low. The authors present a case of a longtime hearing aid user whose hearing aids provided decreasing benefit as his hearing impairment increased to the extent that cochlear implantation was considered. Through the establishment of patient-specific treatment goals, the provision of appropriate FM technology as verified through real-ear measurements, and careful and deliberate counseling and follow-up, this patient was able to realize significant communication benefits as reported through several self-assessment measures. The cost-benefit implications of FM technology versus cochlear implantation are discussed.


Author(s):  
Lisa Straetmans ◽  
B. Holtze ◽  
Stefan Debener ◽  
Manuela Jaeger ◽  
Bojana Mirkovic

Abstract Objective. Neuro-steered assistive technologies have been suggested to offer a major advancement in future devices like neuro-steered hearing aids. Auditory attention decoding methods would in that case allow for identification of an attended speaker within complex auditory environments, exclusively from neural data. Decoding the attended speaker using neural information has so far only been done in controlled laboratory settings. Yet, it is known that ever-present factors like distraction and movement are reflected in the neural signal parameters related to attention. Approach. Thus, in the current study we applied a two-competing speaker paradigm to investigate performance of a commonly applied EEG-based auditory attention decoding (AAD) model outside of the laboratory during leisure walking and distraction. Unique environmental sounds were added to the auditory scene and served as distractor events. Main results. The current study shows, for the first time, that the attended speaker can be accurately decoded during natural movement. At a temporal resolution of as short as 5-seconds and without artifact attenuation, decoding was found to be significantly above chance level. Further, as hypothesized, we found a decrease in attention to the to-be-attended and the to-be-ignored speech stream after the occurrence of a salient event. Additionally, we demonstrate that it is possible to predict neural correlates of distraction with a computational model of auditory saliency based on acoustic features. Conclusion. Taken together, our study shows that auditory attention tracking outside of the laboratory in ecologically valid conditions is feasible and a step towards the development of future neural-steered hearing aids.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1382
Author(s):  
Shakeel Ahmed Ansari ◽  
Asim Muhammed Alshanberi

The present study investigates the surface modification of AgNPs (synthesized by neem leaves) by benzalkonium chloride (BAC). It was observed that 22 × 109 CFU were formed at 0.25 mM AgNPs concentration. However, it was reduced to 14 × 109 CFU for BAC-coated AgNPs at similar experimental conditions. The enzymatic activity of β-glucosidase was significantly enhanced from 0.0625 mM to 0.5 mM concentration of AgNPs, as well as BAC–AgNPs. However, there was no further change of activity beyond this concentration. ZOI of AgNPs and BAC–AgNPs was measured against E. coli, B. subtilis, P. aeruginosa, and S pneumoniae at 0.25 mM and 0.50 mM concentrations of these bioactive agents. ZOI was 3.45 cm and 3.56 cm for AgNPs and BAC–AgNPs at 0.25 mM of these bioactive agents, respectively, against E. coli. However, these values were 4.28 cm and 4.40 cm, respectively, against B. subtilis. ZOI was obtained at 3.36 cm and 3.47 cm, respectively, against P. aeruginosa under similar experimental concentrations. However, ZOI was achieved at 3.44 cm and 3.62 cm, respectively, against S. pneumonia, under similar experimental conditions. Hence, such research findings can be exploited for potential applications in numerous environmental and biomedical fields.


2020 ◽  
Author(s):  
Sergi Vela ◽  
Alan Scheidegger ◽  
Raimon Fabregat ◽  
Clemence Corminboeuf

<p>Azobenzene and its derivatives are one of the most-widespread molecular scaffolds in a range of modern applications, as well as in fundamental research. After photoexcitation, azo-based photoswitches revert back to the most stable isomer in a timescale (t<sub>1/2</sub>) that determines the range of potential applications. Attempts to bring t<sub>1/2</sub> to extreme values prompted to the development of azobenzene and azoheteroarene derivatives that either rebalance the E- and Z- isomer stabilities, or exploit unconventional thermal isomerization mechanisms. In the former case, one successful strategy has been the creation of macrocycle strain, which tends to impact the E/Z stability asymmetrically, and thus significantly modifies t<sub>1/2</sub>. On the bright side, bridged derivatives have shown an improved optical switching owing to the higher quantum yields and absence of degradation. However, in most (if not all) cases, bridged derivatives display a <i>reversed</i> thermal stability (more stable Z-isomer), and smaller t<sub>1/2</sub> than the acyclic counterparts, which restricts their potential interest to applications requiring a fast forward and backwards switch. In this paper, we investigate the impact of alkyl bridges to the thermal stability of phenyl-azoheteroarenes using computational methods, and we reveal that is indeed possible to combine such improved photo-switching characteristics while preserving the <i>regular</i> thermal stability (more stable E-isomer), and increased t<sub>1/2</sub> values under the appropriate connectivity and bridge length.</p>


2021 ◽  
Vol 14 ◽  
Author(s):  
A. Guillermo Bracamonte

: Graphene as Organic material showed special attention due to their electronic and conductive properties. Moreover, its highly conjugated chemical structures and relative easy modification permitted varied design and control of targeted properties and applications. In addition, this Nanomaterial accompanied with pseudo Electromagnetic fields permitted photonics, electronics and Quantum interactions with their surrounding that generated new materials properties. In this context, this short Review, intends to discuss many of these studies related with new materials based on graphene for light and electronic interactions, conductions, and new modes of non-classical light generation. It should be highlighted that these new materials and metamaterials are currently in progress. For this reason it was showed and discussed some representative examples from Fundamental Research with Potential Applications as well as for their incorporations to real Advanced devices and miniaturized instrumentation. In this way, it was proposed this Special issue entitled “Design and synthesis of Hybrids Graphene based Metamaterials”, in order to open and share the knowledge of the Current State of the Art in this Multidisciplinary field.


Sign in / Sign up

Export Citation Format

Share Document