scholarly journals Elevated Expression of lncRNA MEG3 Induces Endothelial Dysfunction on HUVECs of IVF Born Offspring via Epigenetic Regulation

2022 ◽  
Vol 8 ◽  
Author(s):  
Ying Jiang ◽  
Hong Zhu ◽  
Hong Chen ◽  
Yi-Chen Yu ◽  
Ye-Tao Xu ◽  
...  

Cardiovascular dysfunction in children born after in vitro fertilization (IVF) has been of great concern, the potential molecular mechanisms for such long-term outcomes are still unknown. Here, we found that systolic blood pressure was a little higher in IVF born offspring at 2 years old compared to those born after being naturally conceived. Besides, the expression level of maternally expressed gene 3 (MEG3) was higher in human umbilical vein endothelial cells (HUVECs) from IVF offspring than that in spontaneously born offspring. Pearson correlation test showed that MEG3 relative expression is significantly related to the children's blood pressure (Coefficient = 0.429, P = 0.0262). Furthermore, we found decreased expression of endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF) along with elevated expression of endothelial-1(ET1) in HUVECs from IVF offspring, accompanied by lower secretion of nitrite, VEGF, and higher secretion of ET1 in the umbilical cord serum of IVF offspring. Correlation analysis showed MEG3 expression highly correlated with ET1 and Nitrate concentration. With pyrosequencing technology, we found that elevated expression of MEG3 was the result of hypomethylation of the MEG3 promoter. Therefore, our results provide a potential mechanism addressing the high-risk of hypertension in IVF offspring via MEG3 epigenetic regulation.

2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Qiulian Zhou ◽  
Dongchao Lv ◽  
Qi Sun ◽  
Ping Chen ◽  
Yihua Bei ◽  
...  

Myocardial infarction (MI) is among major causes of morbidity and mortality associated with coronary artery disease. Angiogenesis improves tissue perfusion and cardiac repair after MI. Therefore, angiogenesis is considered to be a novel therapeutic way for ischemic heart diseases. MicroRNAs (miRNAs, miRs) have been reported to play important roles in regulating post-ischemic neovascularization. The current study aims at investigating the role of miR-4261 in angiogenesis. We found that miR-4261 mimics increased, while miR-4261 inhibitors decreased the proliferation of human umbilical vein endothelial cells (HUVEC) using EdU incorporation assay (17.25%±1.31% vs 30.91%±0.92% in nc-mimics vs mir-4261-mimics, 17.91%±1.36% vs 8.51%±0.82% in nc-inhibitor vs mir-4261-inhibitor, respectively) and CCK-8 assays (0.84±0.04 vs 1.38±0.04 in nc-mimics vs mir-4261-mimics, 0.80±0.02 vs 0.72±0.01 in nc-inhibitor vs mir-4261-inhibitor, respectively). The wound healing assay showed that miR-4261 mimic transfection resulted in a significant increase in the migration of HUVEC compared to that of the negative controls while miR-4261 inhibition had the opposite effects. Tube formation assays showed that HUVEC transfected with miR-4261 mimics increased the number of tubes formed (57.25±2.56 vs 81.5±2.53 in nc-mimics vs mir-4261-mimics, respectively), while miR-4261 inhibitor-transfected cells had the opposite effect (56.55±0.45 vs 41.38±0.52 in nc-inhibitor vs mir-4261-inhibitor, respectively). These results indicate that miR-4261 play an important role in regulating angiogenesis. However, it remains unknown which target gene mediated the effects of miR-4261. Thus, it will be of great interest to further investigate the molecular mechanisms of miR-4261 in the proliferation, migration, and tube formation of HUVEC in vitro. MiR-4261 could be a potential therapeutic target to enhance angiogenesis.


2020 ◽  
Author(s):  
Ying Jiang ◽  
Hong Zhu ◽  
Hong Chen ◽  
Meng-Meng Yang ◽  
Yi-Chen Yu ◽  
...  

Abstract Background: The cardiovascular dysfunction in children born after in vitro fertilization (IVF) has been of great concern, in our study, we aim to explore potential molecular mechanism for such long-term outcomes. Methods:Real-time qPCR was used to test long non-coding RNA MEG3 and endothelium-derived factors, endothelial nitric oxide synthase (eNOS), endothelin-1(ET1), vascular endothelial growth factor (VEGF). Primary HUVEC after caesarean section was treated with different estradiol concentrations in vitro. Besides, knockdown of MEG3 on HUVEC provided further evidence between MEG3 expression and alteration of NO, ET1, VEGF. Then, by using pyrosequencing, we detected MEG3 promoter methylation status.Results: We found that the expression level of MEG3 was higher in human umbilical vein endothelial cells (HUVECs) of IVF offspring than that in spontaneously born offspring. Furthermore, we found decreased expression of eNOS, VEGF, elevated expression of ET1 in HUVECs from IVF offspring compared to spontaneously born offspring. We further confirmed the results from in-vivo experiments by demonstrating that high-estradiol intrauterine environments lead to abnormal expression of MEG3 and endothelium-derived factors. Meanwhile, silencing MEG3 expression decreased ET1 expression, and increased nitrite, nitrate, VEGF secretion, which could correct the effect we observed in-vivo. With pyrosequencing technology, we found that elevated expression of MEG3 in IVF offspring derived HUVECs was the result of hypomethylation of the MEG3 promoter. Conclusions: Our results demonstrated that higher expression of MEG3 in IVF-born HUVECs, accompanied by lower secretion of eNOS, VEGF, and higher secretion of ET1, which is closely related with endothelial dysfunction, which together provide a potential mechanism addressing high-risk of hypertension in IVF offspring.


2020 ◽  
Author(s):  
Ying Jiang ◽  
Hong Zhu ◽  
Hong Chen ◽  
Meng-Meng Yang ◽  
Yi-Chen Yu ◽  
...  

Abstract Background: The cardiovascular dysfunction in children born after in vitro fertilization (IVF) has been of great concern, in our study, we aim to explore potential molecular mechanisms for such long-term outcomes.Methods:Real-time qPCR was used to test long non-coding RNA MEG3 and endothelium-derived factors such as endothelial nitric oxide synthase (eNOS), endothelin-1(ET1), and vascular endothelial growth factor (VEGF). ELISA was used to determinate levels of the first and second oxidation products of NO (nitrite, nitrate), ET1 and VEGF. Primary HUVECs collected after caesarean section were treated with different estradiol concentrations in vitro. Additionally, knockdown of MEG3 on HUVEC provided further evidence between MEG3 expression and alteration of NO, ET1, VEGF. Then, by using pyrosequencing, we uncovered the methylation status of the MEG3 region.Results: We found that the expression level of MEG3 was higher in human umbilical vein endothelial cells (HUVECs) of IVF offspring than that in spontaneously born offspring. Furthermore, we found decreased expression of eNOS and VEGF along with elevated expression of ET1 in HUVECs from IVF offspring compared to spontaneously born offspring, accompanied by lower secretion of nitrite, VEGF, and higher secretion of ET1 in the umbilical cord serum of IVF offspring. We confirmed the results from in vivo experiments by demonstrating that high estradiol intrauterine environments lead to abnormal expression of MEG3 and endothelium derived factors. Meanwhile, silencing MEG3 expression decreased ET1 expression, and increased nitrite, nitrate, and VEGF secretion, which could account for the effects we observed in vivo. With pyrosequencing technology, we found that elevated expression of MEG3 in IVF offspring derived HUVECs was the result of hypomethylation of the MEG3 promoter.Conclusions: Our results demonstrated that increased expression of MEG3 in IVF-born HUVECs, accompanied by lower secretion of eNOS and VEGF along with higher secretion of ET1, which is closely related with endothelial dysfunction, together provide a potential mechanism addressing high risk of hypertension in IVF offspring.


2020 ◽  
Author(s):  
Ying Jiang ◽  
Hong Zhu ◽  
Hong Chen ◽  
Meng-Meng Yang ◽  
Yi-Chen Yu ◽  
...  

Abstract Background: The cardiovascular dysfunction in children born after in vitro fertilization (IVF) has been of great concern, in our study, we aim to explore potential molecular mechanism for such long-term outcomes. Methods: Real-time qPCR was used to test long non-coding RNAMEG3and endothelium-derived factors, endothelial nitric oxide synthase (eNOS), endothelin-1(ET1), vascular endothelial growth factor (VEGF). Primary HUVEC after caesarean section was treated with different estradiol concentrations in vitro. Besides, knockdown ofMEG3on HUVEC provided further evidence between MEG3 expression and alteration of NO, ET1, VEGF. Then, by using pyrosequencing, we detectedMEG3promoter methylation status. Results: We found that the expression level of MEG3was higher in human umbilical vein endothelial cells (HUVECs) of IVF offspring than that in spontaneously born offspring. Furthermore, we found decreased expression ofeNOS, VEGF, elevated expression of ET1in HUVECs from IVF offspring compared to spontaneously born offspring. We further confirmed the results from in-vivo experiments by demonstrating that high-estradiol intrauterine environments lead to abnormal expression of MEG3 and endothelium-derived factors. Meanwhile, silencing MEG3expression decreased ET1expression, and increased nitrite, nitrate, VEGFsecretion, which could correct the effect we observed in-vivo. With pyrosequencing technology, we found that elevated expression of MEG3in IVF offspring derived HUVECs was the result of hypomethylation of the MEG3promoter. Conclusions: Our results demonstrated that higher expression ofMEG3in IVF-born HUVECs, accompanied by lower secretion of eNOS, VEGF, and higher secretion of ET1, which is closely related with endothelial dysfunction, which togetherprovide a potential mechanism addressing high-risk of hypertension in IVF offspring.


2015 ◽  
Vol 37 (6) ◽  
pp. 2194-2208 ◽  
Author(s):  
Jun Li ◽  
Yongqing Zhang ◽  
Qingxia Zhao ◽  
Jianghua Wang ◽  
Xijing He

Background/Aims: Elucidation of the molecular mechanisms governing osteoblast differentiation and angiogenesis are of great importance for improving the treatment of bone-related diseases. In this study, we examined the role of microRNA (miR)-10a in the differentiation of MC3T3-E1 cells and pro angiogenic activity of mouse umbilical vein endothelial cells (MUVECs). Methods: The murine pre-osteoblast cell line MC3T3-E1 and MUVECs were used in the experiment. After transfected with miR-10a mimics or inhibitors, with or without LiCl pretreatment, the miR-10a, ALP, Runx2, Osx, OC and Dlx5 expression were assessed by RT-PCR. MC3T3-E1 cells were cultured with BMP2 to differentiate into bone cells, osteogenic differentiation of MC3T3-E1 cells were detected by ALP and ARS staining. Cell viability were analyzed by MTT and the protein expression of β-catenin, LEF1, cyclinD1, MMP2, and VEGF were detected by Western blotting; VEGF and VE-cadherin release were assessed by ELISA, and the migration of MUVECs, as well as tube formation were also detected. Results: MiR-10a expression was obviously down-regulated during osteogenic differentiation. Overexpression of miR-10a inhibited osteogenic differentiation of MC3T3-E1 cells, effectively decreasing MUVECs proliferation, migration, VEGF expression, VE-cadherin concentrations, and tube formation in vitro, whereas miR-10a silence enhanced those processes. Further mechanism assays demonstrated that overexpression of miR-10a reduced the β-catenin at both protein and transcription level, while pretreatment with Wnt signaling activator Licl partially attenuated the suppression effects of miR-10a overexpression on osteoblast differentiation and angiogenesis. Conclusion: Our findings imply that miR-10a plays a suppressive role in osteoblast differentiation of MC3T3-E1 cells and pro angiogenic activity of MUVECs by regulating the β-catenin expression, representing a novel and potential therapeutic target for the treatment of bone regeneration-related diseases.


2006 ◽  
Vol 95 (04) ◽  
pp. 678-688 ◽  
Author(s):  
Agnès Basire ◽  
Florence Sabatier ◽  
Sophie Ravet ◽  
Edouard Lamy ◽  
Agnès Mialhe ◽  
...  

SummaryEndothelial progenitor cells (EPC) displaya unique ability to repair vascular injury and promote neovascularization although the underlying molecular mechanisms remain poorly understood. Urokinase-type plasminogen activator (uPA) and its receptor (uPAR) play a critical role in cell migration and angiogenesis by facilitating proteolysis of extracellular matrix.The aim of the present study was to characterize the uPA/uPAR-dependent proteolytic potential of EPC outgrown from human umbilical cord blood and to analyze its contribution to their angiogenic properties in vitro. Cells derived from EPC (EPDC), presenting typical features of late outgrowth endothelial cells, were compared to mature endothelial cells, represented by human umbilical vein endothelial cells (HUVEC). Using quantitative flow cytometry, enzyme-linked immunosorbent assays and zymography, we demonstrated that EPDC displayed higher levels of uPA and uPAR. In conditioned culture media, uPA-dependant proteolytic activity was also found to be significantly increased in EPDC.This activity was paralleled bya higher secretion of pro-metalloproteinase-2 (pro-MMP-2). Inhibition of EPDC-associated uPA by monoclonal antibodies that block either uPA activity or receptor binding, significantly reduced proliferation, migration and capillary like tube formation. Moreover, tumor necrosis factoralpha and vascular endothelial growth factor,known to be locally secreted in ischemic areas, further increased the proteolytic potential of EPDC by up-regulating uPA and uPAR expression respectively.The EPDC response to these factors was found to be more pronounced than that of HUVEC. In conclusion, these findings indicated that EPDC are characterized by high intrinsic uPA/uPAR-dependent proteolytic potential that could contribute to their invasive and angiogenic behaviour.


2021 ◽  
Vol 8 ◽  
Author(s):  
Christiane D. Much ◽  
Barbara S. Sendtner ◽  
Konrad Schwefel ◽  
Eric Freund ◽  
Sander Bekeschus ◽  
...  

Cerebral cavernous malformations are slow-flow thrombi-containing vessels induced by two-step inactivation of the CCM1, CCM2 or CCM3 gene within endothelial cells. They predispose to intracerebral bleedings and focal neurological deficits. Our understanding of the cellular and molecular mechanisms that trigger endothelial dysfunction in cavernous malformations is still incomplete. To model both, hereditary and sporadic CCM disease, blood outgrowth endothelial cells (BOECs) with a heterozygous CCM1 germline mutation and immortalized wild-type human umbilical vein endothelial cells were subjected to CRISPR/Cas9-mediated CCM1 gene disruption. CCM1−/− BOECs demonstrated alterations in cell morphology, actin cytoskeleton dynamics, tube formation, and expression of the transcription factors KLF2 and KLF4. Furthermore, high VWF immunoreactivity was observed in CCM1−/− BOECs, in immortalized umbilical vein endothelial cells upon CRISPR/Cas9-induced inactivation of either CCM1, CCM2 or CCM3 as well as in CCM tissue samples of familial cases. Observer-independent high-content imaging revealed a striking reduction of perinuclear Weibel-Palade bodies in unstimulated CCM1−/− BOECs which was observed in CCM1+/− BOECs only after stimulation with PMA or histamine. Our results demonstrate that CRISPR/Cas9 genome editing is a powerful tool to model different aspects of CCM disease in vitro and that CCM1 inactivation induces high-level expression of VWF and redistribution of Weibel-Palade bodies within endothelial cells.


Author(s):  
D.J.P. Ferguson ◽  
A.R. Berendt ◽  
J. Tansey ◽  
K. Marsh ◽  
C.I. Newbold

In human malaria, the most serious clinical manifestation is cerebral malaria (CM) due to infection with Plasmodium falciparum. The pathology of CM is thought to relate to the fact that red blood cells containing mature forms of the parasite (PRBC) cytoadhere or sequester to post capillary venules of various tissues including the brain. This in vivo phenomenon has been studied in vitro by examining the cytoadherence of PRBCs to various cell types and purified proteins. To date, three Ijiost receptor molecules have been identified; CD36, ICAM-1 and thrombospondin. The specific changes in the PRBC membrane which mediate cytoadherence are less well understood, but they include the sub-membranous deposition of electron-dense material resulting in surface deformations called knobs. Knobs were thought to be essential for cytoadherence, lput recent work has shown that certain knob-negative (K-) lines can cytoadhere. In the present study, we have used electron microscopy to re-examine the interactions between K+ PRBCs and both C32 amelanotic melanoma cells and human umbilical vein endothelial cells (HUVEC).We confirm previous data demonstrating that C32 cells possess numerous microvilli which adhere to the PRBC, mainly via the knobs (Fig. 1). In contrast, the HUVEC were relatively smooth and the PRBCs appeared partially flattened onto the cell surface (Fig. 2). Furthermore, many of the PRBCs exhibited an invagination of the limiting membrane in the attachment zone, often containing a cytoplasmic process from the endothelial cell (Fig. 2).


Author(s):  
Susan Gallogly ◽  
Takeshi Fujisawa ◽  
John D. Hung ◽  
Mairi Brittan ◽  
Elizabeth M. Skinner ◽  
...  

Abstract Purpose Endothelial dysfunction is central to the pathogenesis of acute coronary syndrome. The study of diseased endothelium is very challenging due to inherent difficulties in isolating endothelial cells from the coronary vascular bed. We sought to isolate and characterise coronary endothelial cells from patients undergoing thrombectomy for myocardial infarction to develop a patient-specific in vitro model of endothelial dysfunction. Methods In a prospective cohort study, 49 patients underwent percutaneous coronary intervention with thrombus aspiration. Specimens were cultured, and coronary endothelial outgrowth (CEO) cells were isolated. CEO cells, endothelial cells isolated from peripheral blood, explanted coronary arteries, and umbilical veins were phenotyped and assessed functionally in vitro and in vivo. Results CEO cells were obtained from 27/37 (73%) atherothrombotic specimens and gave rise to cells with cobblestone morphology expressing CD146 (94 ± 6%), CD31 (87 ± 14%), and von Willebrand factor (100 ± 1%). Proliferation of CEO cells was impaired compared to both coronary artery and umbilical vein endothelial cells (population doubling time, 2.5 ± 1.0 versus 1.6 ± 0.3 and 1.2 ± 0.3 days, respectively). Cell migration was also reduced compared to umbilical vein endothelial cells (29 ± 20% versus 85±19%). Importantly, unlike control endothelial cells, dysfunctional CEO cells did not incorporate into new vessels or promote angiogenesis in vivo. Conclusions CEO cells can be reliably isolated and cultured from thrombectomy specimens in patients with acute coronary syndrome. Compared to controls, patient-derived coronary endothelial cells had impaired capacity to proliferate, migrate, and contribute to angiogenesis. CEO cells could be used to identify novel therapeutic targets to enhance endothelial function and prevent acute coronary syndromes.


Sign in / Sign up

Export Citation Format

Share Document