scholarly journals A Novel Resveratrol Analog Upregulates SIRT1 Expression and Ameliorates Neointima Formation

2021 ◽  
Vol 8 ◽  
Author(s):  
Baohui Yuan ◽  
He Liu ◽  
Xiaoliang Dong ◽  
Xiaohua Pan ◽  
Xun Sun ◽  
...  

Neointima formation is a serious complication caused by mechanical trauma to the vessel. (R)-4,6-dimethoxy-3-(4-methoxy phenyl)-2,3-dihydro-1H-indanone [(R)-TML 104] is a synthesized analog of the natural product resveratrol sesquiterpenes (±)-isopaucifloral F. The present study aimed to investigate the effects and underlying mechanisms of (R)-TML104 on neointima formation. Our results showed that (R)-TML104 prevented neointima formation based on a carotid artery injury model in mice. Furthermore, (R)-TML104 inhibited platelet-derived growth factor-BB (PDGF-BB)-induced vascular smooth muscle cells (VSMC) phenotypic transformation, evidenced by increased α-smooth muscle actin, reduced VSMC proliferation, and migration. Simultaneously, (R)-TML104 upregulated sirtuin-1 (SIRT1) expression in VSMC. We further uncovered that SIRT1 expression is critical for the inhibitory effects of (R)-TML104 on PDGF-BB-induced VSMC phenotypic transformation in vitro and injury-induced neointima formation in vivo. Finally, (R)-TML104-upregulated SIRT1 inhibited PDGF-BB-induced VSMC phenotypic transformation by downregulating nicotinamide adenine dinucleotide phosphate oxidase 4 expression via decreasing nuclear factor-κB acetylation. Taken together, these results revealed that (R)-TML104 upregulates SIRT1 expression and ameliorates neointima formation. Therefore, the application of (R)-TML104 may constitute an effective strategy to ameliorate neointima formation.

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Xiang Zhang ◽  
Jian-feng Zhao ◽  
Fan Zhao ◽  
Jun-feng Yan ◽  
Fan Yang ◽  
...  

Salidroside, a major active ingredient isolated from Rhodiola rosea, has a long application in Chinese medical history. It has widely demonstrated effects on fatigue, psychological stress, and depression and exhibits potential antihypoxia activity. Emerging evidence shows that hypoxia is an important independent risk factor for erectile dysfunction (ED). The aim of this study was to clarify the effect of salidroside on hypoxia-induced phenotypic transformation of corpus cavernosum smooth muscle cells (CCSMCs). Our results showed that salidroside decreased the hypoxia-induced expression of collagen and content of vimentin, a corpus cavernosum smooth muscle synthetic protein, in vitro. Simultaneously, salidroside increased expression of the CCSMC contractile proteins, α-smooth muscle actin (α-SMA) and desmin. In vivo, similarly, the expressions of collagen and hypoxia-inducible factor-1α were increased in bilateral cavernous neurectomy (BCN) rats while they were decreased in the salidroside group. Among the phenotypic proteins, α-SMA and desmin increased and vimentin decreased after treating BCN rats with salidroside compared with the BCN alone group. Overall, our results demonstrate that salidroside has the ability to oppose hypoxia and can inhibit the CCSMC phenotypic transformation induced by hypoxia. Salidroside may provide a new treatment method for ED.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Andrea Iorga ◽  
Gabriel Wong ◽  
Denise Mai ◽  
Jingyuan Li ◽  
Salil Sharma ◽  
...  

Pulmonary hypertension (PH) is a chronic lung disease characterized by progressively elevated pulmonary arterial pressures and severe pulmonary vascular remodeling resulting from interactions between oxidized lipoprotein deposition and increased endothelial proliferation. Previously we have shown increased plasma levels of biological oxidation products such as hydroxyoctadecadienoic acids (HODEs) and hydroxyeicosatetraenoic acids (HETEs) in the rat monocrotaline model of PH. Here we investigated the role of HETEs and HODEs in the development of PH and whether their inhibition with the lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA) attenuates the progression of PH. Mice were placed in a hypoxic chamber with O2 concentrations of ≤10% for 21 days and either left untreated to develop PH (n=7) or treated with NDGA daily (10mg/kg/day, i.p., n=4) from day 1. Direct RV catheterization was terminally performed to record RV pressure (RVP). Pulmonary arteriolar thickening and oxidized lipid deposition were assessed by staining lung sections with Masson’s Trichrome or with α-smooth muscle actin and E-06 (marker for oxidized low-density lipoproteins). In vitro, human pulmonary artery smooth muscle cell (hPASMC) proliferation was assessed by MTT assays in the absence or presence of 12-HETE (100ng/ml), 9-HODE (1µg/ml) and 13-HODE (1µg/ml) alone or together with NDGA (10, 25 and 50µM). In-vitro, HETE/HODE treatment increased hPASMC proliferation ~ 2-fold when compared to untreated cells and NDGA significantly inhibited the proliferative effects of all three oxidized lipids. In-vivo, NDGA treatment prevented the development of PH. RVP was lower in the NDGA-treated group vs. the PH group (24.01±1.39mmHg vs. 36.91±5.74mmHg, p<0.05) and was comparable to control normoxic mice (20.93±2.52mmHg). RV hypertrophy index was significantly elevated in the PH mice versus control mice (0.38±0.03 vs. 0.28±0.02 (p<0.001), while NDGA treatment completely prevented the development of RV hypertrophy (0.28±0.04). Lung sections demonstrated arteriolar thickening and E-06 positive deposits in the PH group, which was prevented by NDGA therapy. We conclude that oxidized fatty acid deposition and accumulation might play a role in the development of PH.


2020 ◽  
Vol 52 (9) ◽  
pp. 988-997
Author(s):  
Haizhen Duan ◽  
Xiaojun Zhang ◽  
Renjie Song ◽  
Tongying Liu ◽  
Yuanyuan Zhang ◽  
...  

Abstract Acute aortic dissection (AAD) is a cardiovascular emergency caused by the formation of hematoma in the middle layer of the aortic wall. Adiponectin (APN) is an adipose tissue-specific protein that has anti-inflammation and anti-atherosclerosis functions. Pyroptosis, as an inflammatory cell death, depends on the activation of caspase1, while nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) is a typical representative of the pyroptosis pathway. In this study, we aimed to find whether APN affects the AAD process. The results showed that APN overexpression (OE) inhibited the AAD development and the levels of glucose, triglyceride, and total cholesterol in mice model. In addition, APN OE inhibited the productions of gasdermin D (GSDMD), NLRP3, caspase1, interleukin-1β (IL-1β), IL-18, and osteopontin (OPN), as well as α-smooth muscle actin (α-SMA) downregulation in vitro and in vivo. In addition, NLRP3 was found to be a target gene of miR-133a and miR-133a OE showed similar effects to APN OE in attenuating the LPS-induced productions of GSDMD, NLRP3, caspase1, IL-1β, IL-18, and OPN, as well as α-SMA downregulation in vascular smooth muscle cells (vSMCs). Moreover, the beneficial effects of APN OE were abolished by miR-133a knockdown in vSMCs. In conclusion, our present results indicated that the upregulation of miR-133a by APN inhibits pyroptosis pathway, which potentially rescues AAD.


Endocrinology ◽  
2014 ◽  
Vol 155 (7) ◽  
pp. 2377-2390 ◽  
Author(s):  
Svenja Nölting ◽  
Alessio Giubellino ◽  
Yasin Tayem ◽  
Karen Young ◽  
Michael Lauseker ◽  
...  

Currently, there are no reliably effective therapeutic options for metastatic pheochromocytoma (PCC) and paraganglioma. Moreover, there are no therapies that may prevent the onset or progression of tumors in patients with succinate dehydrogenase type B mutations, which are associated with very aggressive tumors. Therefore, we tested the approved and well-tolerated drugs lovastatin and 13-cis-retinoic acid (13cRA) in vitro in an aggressive PCC mouse cell line, mouse tumor tissue-derived (MTT) cells, and in vivo in a PCC allograft nude mouse model, in therapeutically relevant doses. Treatment was started 24 hours before sc tumor cell injection and continued for 30 more days. Tumor sizes were measured from outside by caliper and sizes of viable tumor mass by bioluminescence imaging. Lovastatin showed antiproliferative effects in vitro and led to significantly smaller tumor sizes in vivo compared with vehicle treatment. 13cRA promoted tumor cell growth in vitro and led to significantly larger viable tumor mass and significantly faster increase of viable tumor mass in vivo over time compared with vehicle, lovastatin, and combination treatment. However, when combined with lovastatin, 13cRA enhanced the antiproliferative effect of lovastatin in vivo. The combination-treated mice showed slowest tumor growth of all groups with significantly slower tumor growth compared with the vehicle-treated mice and significantly smaller tumor sizes. Moreover, the combination-treated group displayed the smallest size of viable tumor mass and the slowest increase in viable tumor mass over time of all groups, with a significant difference compared with the vehicle- and 13cRA-treated group. The combination-treated tumors showed highest extent of necrosis, lowest median microvessel density and highest expression of α-smooth muscle actin. The combination of high microvessel density and low α-smooth muscle actin is a predictor of poor prognosis in other tumor entities. Therefore, this drug combination may be a well-tolerated novel therapeutic or preventive option for malignant PCC.


1999 ◽  
Vol 73 (9) ◽  
pp. 7745-7751 ◽  
Author(s):  
Dennis G. Macejak ◽  
Hua Lin ◽  
Saiphone Webb ◽  
Jennifer Chase ◽  
Kristi Jensen ◽  
...  

ABSTRACT Smooth muscle cell (SMC) proliferation is an important component of restenosis in response to injury after balloon angioplasty. Inhibition of proliferation in vivo can limit neointima hyperplasia in animal models of restenosis. Ribozymes against c-myb mRNA have been shown to be effective inhibitors of SMC proliferation in vitro. The effectiveness of adenovirus as a gene therapy vector in animal models of restenosis is well documented. In order to test the utility of ribozymes to inhibit SMC proliferation by a gene therapy approach, recombinant adenovirus expressing ribozymes against c-mybmRNA was generated and tested both in vitro and in vivo. This adenovirus ribozyme vector is shown to inhibit SMC proliferation in culture and neointima formation in a rat carotid artery balloon injury model of restenosis.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
J Dutzmann ◽  
L.M Bode ◽  
L Korte ◽  
K Kalies ◽  
S Koch ◽  
...  

Abstract Background Empagliflozin, an inhibitor of the sodium glucose co-transporter 2 (SGLT2), developed as an anti-diabetic agent exerts additional beneficial effects on heart failure outcomes in patients with type 2 diabetes mellitus at high cardiovascular risk. However, the effect of empagliflozin on vascular cell function and vascular remodeling processes remain largely elusive. Methods/Results Immunocytochemistry and immunoblotting revealed SGLT2 to be expressed in human diabetic and non-diabetic smooth muscle (SMC) and endothelial cells (EC) as well as in murine femoral arteries. In vitro, empagliflozin significantly reduced serum-induced proliferation and migration of human diabetic and non-diabetic SMCs in a dose-dependent manner without any toxic or apoptotic effects. In contrast, empagliflozin significantly increased the cell count and migrational capacity of human diabetic ECs, but not of human non-diabetic ECs. In vivo, therapeutic application of empagliflozin (225 mg/kg medicated diet) resulted in a significantly reduced number of Ki-67+ proliferating neointimal cells in response to femoral artery wire-injury in C57BL/6J mice. Empagliflozin furthermore prevented subsequent neointima formation (luminal stenosis 91.2% vs. 80.6% at 21 days; P&lt;0.05). Comparable effects of empagliflozin were observed in a streptozocin-induced diabetic model of apolipoprotein E−/− mice. Conclusive to the in vitro-results, re-endothelialization was not significantly affected in C57BL/6 mice (non-reendothelialized distance 2.57 mm vs. 2.3 mm; P=0.07), but even significantly improved in diabetic mice after treatment with empagliflozin (3.1 mm vs. 2.58 mm; P&lt;0.001) assessed by Evan's Blue staining 3 days after electric denudation of the murine carotid artery. Microarray analysis of human SMCs identified the vasoactive peptide apelin to be decisively regulated in response to empagliflozin treatment. Further pathway analysis exhibited apelin to prevent SMC proliferation by de-phosphorylation of Akt and to augment EC proliferation by phosphorylation of p38 MAPK. Conclusion These data document the functional impact of empagliflozin on vascular SMCs and ECs for the first time. Empagliflozin significantly reduces serum-induced proliferation and migration of SMCs in vitro and prevented neointima formation in vivo, while augmenting EC proliferation in vitro and re-endothelialization in vivo after vascular injury. Thus, empagliflozin holds promise to exert favorable effects on vascular healing, and to prevent neointima formation following vascular injury in diabetic and non-diabetic patients. Funding Acknowledgement Type of funding source: Public Institution(s). Main funding source(s): Hannover Medical School, Martin-Luther-University Halle-Wittenberg


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Emily Nguyen ◽  
Olha Koval ◽  
Isabella Grumbach

Background: Restenosis after angioplasty for coronary vascular disease remains a critical problem in cardiovascular medicine. Vascular smooth muscle cell (VSMC) migration and proliferation cause restenosis through neointima formation. Mitochondrial motility is likely necessary for cell proliferation and migration, and is inhibited in microdomains with increased Ca 2+ . The Ca 2+ /calmodulin-dependent kinase II (CaMKII) in mitochondria (mtCaMKII) is proposed to control mitochondrial matrix Ca 2+ uptake through mitochondrial Ca 2+ uniporter (MCU). Thus, we hypothesized that blocking mtCaMKII decreases VSMC migration and neointima formation by decreasing mitochondrial motility. Methods: mtCaMKII was inhibited by expression of the mitochondria-targeted CaMKII inhibitor peptide (CaMKIIN) in a novel transgenic mouse model in smooth muscle only (SM-mtCaMKIIN) or delivered by adenoviral transduction (Ad-mtCaMKIIN). Results: In our models, mtCaMKIIN was detected selectively in mitochondria of VSMC. mtCaMKIIN significantly reduced mitochondrial Ca 2+ current and Ca 2+ content compared to WT in vivo and in vitro. SM-mtCaMKIIN mice showed significantly reduced neointimal area 28 days after endothelial injury (n=8, p<0.05) and fewer proliferating neointimal cells by PCNA staining. In vitro, Ad-mtCaMKIIN mildly reduced VSMC proliferation and mitochondrial ROS production without altering maximal respiration after PDGF treatment. Ad-mtCaMKIIN abolished VSMC migration, as did mitoTEMPO and MCU inhibitor Ru360. Ad-mtCaMKIIN blocked mitochondrial mobility towards the leading edge, while relocation of mitochondria was seen in WT cells 6 h after PDGF treatment. Mitochondrial redistribution was also inhibited by Ru360, but not by mitoTEMPO or cytoplasmic CaMKII inhibition. Mitochondrial fission promotes cell migration. Accordingly, PDGF increased mitochondrial particles in WT VSMC, while mitochondria in Ad-mtCaMKIIN cells were fragmented and unresponsive to PDGF treatment. Conclusions: mtCaMKIIN prevents mitochondrial distribution to the leading edge and reduces VSMC migration and neointima formation. These data suggest mitochondrial Ca 2+ regulation plays an important role in VSMC migration by altering mitochondrial location.


Sign in / Sign up

Export Citation Format

Share Document