scholarly journals Monthly Variations of the Winter Precipitation over the Philippines During the Mature Phase of Eastern Pacific El Niño

2021 ◽  
Vol 8 ◽  
Author(s):  
Wenxu Liao ◽  
Yi Fan ◽  
Shoupeng Zhu ◽  
Yanyan Huang ◽  
Yang Lv

The influence of ENSO events on winter precipitation anomalies in the Philippines has been well known since decades, but whether this effect is different between months needs further exploration. In this study, the monthly variations of precipitation over the Philippines in winter during the mature phases of ENSO events are investigated with datasets of reanalysis and observations from 1979 to 2019. Results indicate that only the eastern Pacific (EP) El Niño shows different influences on the Philippines winter precipitation among different months. In December during mature EP El Niño events, precipitation deficiency is not significant over the whole Philippines, whereas in January and February, precipitation decreases significantly over the southern Philippines as well as the areas to the southeast of the Philippines. Besides, the correlation between consecutive dry days over the southeast Philippines and ENSO is significantly positive in January and February but not in December. The eastward propagation of EP El Niño–related anomalous anticyclone over the western North Pacific (WNPAC) from December to February is proved responsible for the changed relationship between EP El Niño and precipitation. In December, the center of the WNPAC is located to the southeast of the Indo-China Peninsula, inducing weak lower-level wind anomalies and, consequently, weak vertical movement and water vapor transport anomalies over the Philippines, which exerts limited influence on the local precipitation. In January and February, by contrast, the center of WNPAC is located to the southeast of the Philippines, and therefore the southern Philippines is occupied by anticyclonic moisture transports and downward vertical motions, favoring less precipitations and larger than normal consecutive dry days over there.

Atmosphere ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 266
Author(s):  
Jinshuang Zhu ◽  
Yudi Liu ◽  
Ruiqing Xie ◽  
Haijie Chang

The precipitation data from the Global Precipitation Climatology Project (GPCP) and CPC Merged Analysis of Precipitation (CMAP) were used to investigate the discrepancy of Centre and Eastern Pacific ITCZ (CEP-ITCZ) during two types of El Niño years. Two models of the heat source distribution during two types of El Niño events were constructed, and the causes of different CEP-ITCZ anomalies for two types of El Niño events were analyzed through the Gill model. The results show that the CEP-ITCZ precipitation is approximately 4.0° southward, and the intensity is enhanced by 3.6 mm/day during the mature period of Eastern Pacific El Niño (EP-El Niño), while during the mature period of Central Pacific El Niño (CP-El Niño), it is only 0.8° southward, and the intensity is enhanced by 3.2 mm/day. The meridional mode of the SST anomaly by means of EOF (Empirical Orthogonal Function) can indirectly affect the CEP-ITCZ by influencing the atmospheric Rossby wave response. In CP-El Niño years, the meridional mode of the SST anomaly is weak, and the atmospheric Rossby wave response enhances the northern and southern trade-wind zones at the same time. The anomaly of cross-equatorial flow is weak and the CEP-ITCZ moves southward a little. At the same time, the wind convergence zone is enhanced, and it is more conducive to the vertical transport of water vapor. In EP-El Niño years, the meridional mode of the SST anomaly is strong, and the atmospheric Rossby wave response strengthens the meridional wind on the northern side of the equator, leading to the southward shift of the CEP-ITCZ. At the same time, the wind convergence zone is weakened and widened, and to a certain extent, it suppresses the vertical transport increase of water vapor caused by the sea surface evaporation.


2017 ◽  
Vol 30 (3) ◽  
pp. 849-864 ◽  
Author(s):  
Kang Xu ◽  
Chi-Yung Tam ◽  
Congwen Zhu ◽  
Boqi Liu ◽  
Weiqiang Wang

Abstract Future projections of the eastern-Pacific (EP) and central-Pacific (CP) types of El Niño in the twenty-first century, as well as their associated tropical circulation and precipitation variability, are investigated using historical runs and representative concentration pathway 8.5 (RCP8.5) simulations from 31 coupled models in phase 5 of the Coupled Model Intercomparison Project (CMIP5). As inferred from CMIP5 models that best capture both El Niño flavors, EP El Niño sea surface temperature (SST) variability will become weaker in the future climate, while no robust change of CP El Niño SST is found. Models also reach no consensus on the future change of relative frequency from CP to EP El Niño. However, there are robust changes in the tropical overturning circulation and precipitation associated with both types of El Niño. Under a warmer climate, magnitudes of precipitation anomalies during EP El Niño are projected to increase, presenting significant enhancement of the dry (wet) signal over the western (central–eastern) Pacific. This is consistent with an accelerated hydrological cycle in the deep tropics; hence, a “wet get wetter” picture appears under global warming, accompanied by a weakened anomalous Walker circulation. For CP El Niño, drier-than-normal conditions will be intensified over the tropical central–eastern Pacific in the future climate, with stronger anomalous sinking related to the strengthened North Pacific local Hadley cell. These results suggest that, besides the enhanced basic-state hydrological cycle over the tropics, other elements, such as the anomalous overturning circulation, might also play a role in determining the ENSO precipitation response to a warmer background climate.


2018 ◽  
Vol 15 (2) ◽  
pp. 73
Author(s):  
Budi Prasetyo ◽  
Nikita Pusparini

Pulau Sulawesi dipengaruhi oleh fenomena Central Pacific (CP) dan Eastern Pacific (EP) El Niño. Curah hujan Sulawesi mencakup ketiga pola hujan yang ada di Indonesia yaitu Monsunal, equatorial, dan lokal. Variabilitas ketiga pola curah hujan tersebut akan memberikan respon yang berbeda terhadap pengaruh dari kedua tipe El Niño tersebut. Maka, Kajian ini akan membahas pengaruh dari kedua tipe El Niño  terhadap curah hujan Sulawesi. Penelitian ini Menggunakan data curah hujan bulanan berasal dari Climate Prediction Center (CPC) National Oceanic and Atmospheric Administration (NOAA), Suhu Permukaan Laut (SPL) bulanan dari System Ocean Data Assimilation (SODA) versi 2.2.4 dan oceanic Niño Indeks (ONI) dengan periode  Januari 1950 hingga Desember 2010 (60 tahun). Perhitungan statistik sederhana berupa perata-rataan, korelasi, dan analisa komposit digunakan dalam kajian ini. Penentuan tipe El Niño menggunakan tiga buah indeks yang berbeda. Hasilnya diperoleh bahwa Curah hujan Sulawesi berkurang saat kedua tipe El Niño. Penurunan curah hujan akibat EP El Niño berkisar antara 5 – 20 mm sedangkan akibat CP El Niño berkisar antara 2-12 mm. Wilayah Sulawesi dengan pola curah hujan monsunal merupakan wilayah yang mengalami penurunan curah hujan terbesar akibat kedua tipe El Niño tersebut, kemudian diikuti dengan pola curah hujan equatorial dan terakhir Lokal.


2017 ◽  
Vol 8 (4) ◽  
pp. 1009-1017 ◽  
Author(s):  
Sébastien B. Lambert ◽  
Steven L. Marcus ◽  
Olivier de Viron

Abstract. El Niño–Southern Oscillation (ENSO) events are classically associated with a significant increase in the length of day (LOD), with positive mountain torques arising from an east–west pressure dipole in the Pacific driving a rise of atmospheric angular momentum (AAM) and consequent slowing of the Earth's rotation. The large 1982–1983 event produced a lengthening of the day of about 0.9 ms, while a major ENSO event during the 2015–2016 winter season produced an LOD excursion reaching 0.81 ms in January 2016. By evaluating the anomaly in mountain and friction torques, we found that (i) as a mixed eastern–central Pacific event, the 2015–2016 mountain torque was smaller than for the 1982–1983 and 1997–1998 events, which were pure eastern Pacific events, and (ii) the smaller mountain torque was compensated for by positive friction torques arising from an enhanced Hadley-type circulation in the eastern Pacific, leading to similar AAM–LOD signatures for all three extreme ENSO events. The 2015–2016 event thus contradicts the existing paradigm that mountain torques cause the Earth rotation response for extreme El Niño events.


2017 ◽  
Vol 30 (13) ◽  
pp. 4819-4842 ◽  
Author(s):  
Young-Kwon Lim ◽  
Robin M. Kovach ◽  
Steven Pawson ◽  
Guillaume Vernieres

The 2015/16 El Niño is analyzed using atmospheric and oceanic analysis produced using the Goddard Earth Observing System (GEOS) data assimilation systems. As well as describing the structure of the event, a theme of this work is to compare and contrast it with two other strong El Niños, in 1982/83 and 1997/98. These three El Niño events are included in the Modern-Era Retrospective Analysis for Research and Applications (MERRA) and in the more recent MERRA-2 reanalyses. MERRA-2 allows a comparison of fields derived from the underlying GEOS model, facilitating a more detailed comparison of physical forcing mechanisms in the El Niño events. Various atmospheric and oceanic structures indicate that the 2015/16 El Niño maximized in the Niño-3.4 region, with a large region of warming over most of the Pacific and Indian Oceans. The eastern tropical Indian Ocean, Maritime Continent, and western tropical Pacific are found to be less dry in boreal winter, compared to the earlier two strong events. Whereas the 2015/16 El Niño had an earlier occurrence of the equatorial Pacific warming and was the strongest event on record in the central Pacific, the 1997/98 event exhibited a more rapid growth due to stronger westerly wind bursts and the Madden–Julian oscillation during spring, making it the strongest El Niño in the eastern Pacific. Compared to 1982/83 and 1997/98, the 2015/16 event had a shallower thermocline over the eastern Pacific with a weaker zonal contrast of subsurface water temperatures along the equatorial Pacific. While the three major ENSO events have similarities, each is unique when looking at the atmosphere and ocean surface and subsurface.


2012 ◽  
Vol 25 (19) ◽  
pp. 6510-6523 ◽  
Author(s):  
Wei Zhang ◽  
H.-F. Graf ◽  
Yee Leung ◽  
Michael Herzog

Abstract This study examines whether there exist significant differences in tropical cyclone (TC) landfall between central Pacific (CP) El Niño, eastern Pacific (EP) El Niño, and La Niña during the peak TC season (June–October) and how and to what extent CP El Niño influences TC landfall over East Asia for the period 1961–2009. The peak TC season is subdivided into summer [June–August (JJA)] and autumn [September–October (SO)]. The results are summarized as follows: (i) during the summer of CP El Niño years, TCs are more likely to make landfall over East Asia because of a strong easterly steering flow anomaly induced by the westward shift of the subtropical high and northward-shifted TC genesis. In particular, TCs have a greater probability of making landfall over Japan and Korea during the summer of CP El Niño years. (ii) In the autumn of CP El Niño years, TC landfall in most areas of East Asia, especially Indochina, the Malay Peninsula, and the Philippines, is likely to be suppressed because the large-scale circulation resembles that of EP El Niño years. (iii) During the whole peak TC season [June–October (JJASO)] of CP El Niño years, TCs are more likely to make landfall over Japan and Korea. TC landfall in East Asia as a whole has an insignificant association with CP El Niño during the peak TC season. In addition, more (less) TCs are likely to make landfall in China, Indochina, the Malay Peninsula, and the Philippines during the peak TC season of La Niña (EP El Niño) years.


2016 ◽  
Vol 29 (16) ◽  
pp. 5859-5877 ◽  
Author(s):  
Han-Ching Chen ◽  
Zeng-Zhen Hu ◽  
Bohua Huang ◽  
Chung-Hsiung Sui

Abstract This study shows the sudden basinwide reversal of anomalous equatorial zonal transport above the thermocline at the peaking phase of ENSO triggers rapid termination of ENSO events. The anomalous equatorial zonal transport is controlled by the concavity of anomalous thermocline meridional structure across the equator. During the developing phase of ENSO, opposite zonal transport anomalies form in the western-central and central-eastern equatorial Pacific, respectively. Both are driven by the equatorial thermocline anomalies in response to zonal wind anomalies over the western-central equatorial ocean. At this stage, the anomalous zonal transport in the east enhances ENSO growth through zonal SST advection. In the mature phase of ENSO, off-equatorial thermocline depth anomalies become more dominant in the eastern Pacific because of the reflection of equatorial signals at the eastern boundary. As a result, the meridional concavity of the thermocline anomalies is reversed in the east. This change reverses zonal transport rapidly in the central-to-eastern equatorial Pacific, joining with the existing reversed zonal transport anomalies farther to the west, and forms a basinwide transport reversal throughout the equatorial Pacific. This basinwide transport reversal weakens the ENSO SST anomalies by reversed advection. More importantly, the reversed zonal transport reduces the existing zonal tilting of the equatorial thermocline and weakens its feedback to wind anomalies effectively. This basinwide reversal is built in at the peak phase of ENSO as an oceanic control on the evolution of both El Niño and La Niña events. The reversed zonal transport anomaly after the mature phase weakens El Niño in the eastern Pacific more efficiently than it weakens La Niña.


2020 ◽  
Vol 33 (7) ◽  
pp. 2779-2792 ◽  
Author(s):  
Bin Wang ◽  
Xiao Luo ◽  
Jian Liu

AbstractInstrumental observations (1901–2017) are used to uncover the seasonality, regionality, spatial–temporal coherency, and secular change of the relationship between El Niño–Southern Oscillation (ENSO) and Asian precipitation (AP). We find an abrupt seasonal reversal of the AP–ENSO relationship occurring from October to November in a large area of Asia north of 20°N due to a rapid northward shift of the ENSO-induced subsidence from Indonesia to the Philippines. We identified six subregions that have significant correlations with ENSO over the past 116 years with |r| > 0.5 (p < 0.001). Regardless of the prominent subregional differences, the total amount of AP during a monsoon year (from May to the next April) shows a robust response to ENSO with r = −0.86 (1901–2017), implying a 4.5% decrease in the total Asian precipitation for 1° of SST increase in the equatorial central Pacific. Rainfall in tropical Asia (Maritime Continent, Southeast Asia, and India) shows a stable relationship with ENSO with significant 31-yr running correlation coefficients (CCs). However, precipitation in North China, the East Asian winter monsoon front zone, and arid central Asia exhibit unstable relationships with ENSO. Since the 1950s, the AP–ENSO relationships have been enhanced in all subregions except over India. A major factor that determines the increasing trends of the AP–ENSO relationship is the increasing ENSO amplitude. Notably, the AP response is asymmetric with respect to El Niño and La Niña and markedly different between the major and minor ENSO events. The results provide guidance for seasonal prediction and a metric for assessment of climate models’ capability to reproduce the Asian hydroclimate response to ENSO and projected future change.


2020 ◽  
Vol 33 (3) ◽  
pp. 825-846
Author(s):  
Wei Tan ◽  
Zexun Wei ◽  
Qiang Liu ◽  
Qingjun Fu ◽  
Mengyan Chen ◽  
...  

ABSTRACTThis study focuses on different evolutions of the low-level atmospheric circulations between eastern Pacific (EP) El Niño and central Pacific-II (CP-II) El Niño. The western North Pacific anomalous anticyclone (WNPAC) originates from the northern South China Sea for EP El Niño, and moves to the western North Pacific (WNP) afterward. Compared with EP El Niño, the origin of the WNPAC is farther west during CP-II El Niño, with the center over the Indochina Peninsula. Moreover, the WNPAC shows a weaker eastward shift. Such discrepancies are attributed to different evolutions of the cyclonic response over the WNP, which can suppress the convection in the western flank of the anomalous cyclone. The eastward retreat of the anomalous cyclone is significant for EP El Niño, but less evident for CP-II El Niño. These discrepancies are related to zonal evolutions of the increased precipitation over the equatorial Pacific. Following the southward migration of the intertropical convergence zone (ITCZ), the deep-convection region extends eastward along the equator, reinforcing the atmospheric response to the eastern Pacific warming in EP El Niño. For CP-II El Niño, the atmospheric response is insignificant over the eastern Pacific without warming. Moreover, the meridional migration of the ITCZ can modulate zonal variations of the easterly trade wind and specific humidity as well. Due to the combined effects of the climatological background and atmospheric anomalies, the specific humidity–induced and wind-induced moist enthalpy advection contribute to different shifts of the precipitation center.


2012 ◽  
Vol 25 (22) ◽  
pp. 7867-7883 ◽  
Author(s):  
Yuan Yuan ◽  
Song Yang ◽  
Zuqiang Zhang

Abstract The authors examine different evolution features of the low-level anticyclone over the tropical northwestern Pacific between eastern Pacific (EP) El Niño events and central Pacific (CP) El Niño events. During EP El Niño, the low-level anticyclone shows an eastward movement from the northern Indian Ocean to the east of the Philippines. During CP El Niño, however, the anticyclone is mostly confined to the west of the Philippines. It is weaker, exhibits a shorter lifetime, and lacks eastward movement compared to the Philippine Sea anticyclone (PSAC) during EP El Niño. Investigation into the possible impact of Indian Ocean (IO) sea surface temperature (SST) on the evolution of the low-level anticyclone during EP and CP El Niño indicates that both SST and low-level atmospheric circulation over the IO are related more strongly with EP El Niño than with CP El Niño. The IO SST tends to exert a more prominent influence on PSAC during EP El Niño than during CP El Niño. During the developing summer and autumn of EP El Niño, the anomalous anticyclone over the northern Indian Ocean excited by positive IO dipole may contribute to an early development of the PSAC. During the winter and decaying spring, the anomalous anticyclone to the east of the Philippines instigated by the IO basin-wide warming mode also favors a larger persistence of the PSAC. During CP El Niño, however, IO SST shows a negligible impact on the evolution of the anticyclone.


Sign in / Sign up

Export Citation Format

Share Document