scholarly journals The Challenge of Non-Stationary Feedbacks in Modeling the Response of Debris-Covered Glaciers to Climate Forcing

2021 ◽  
Vol 9 ◽  
Author(s):  
Lindsey Nicholson ◽  
Anna Wirbel ◽  
Christoph Mayer ◽  
Astrid Lambrecht

Ongoing changes in mountain glaciers affect local water resources, hazard potential and global sea level. An increasing proportion of remaining mountain glaciers are affected by the presence of a surface cover of rock debris, and the response of these debris-covered glaciers to climate forcing is different to that of glaciers without a debris cover. Here we take a back-to-basics look at the fundamental terms that control the processes of debris evolution at the glacier surface, to illustrate how the trajectory of debris cover development is partially decoupled from prevailing climate conditions, and that the development of a debris cover over time should prevent the glacier from achieving steady state. We discuss the approaches and limitations of how this has been treated in existing modeling efforts and propose that “surrogate world” numerical representations of debris-covered glaciers would facilitate the development of well-validated parameterizations of surface debris cover that can be used in regional and global glacier models. Finally, we highlight some key research targets that would need to be addressed in order to enable a full representation of debris-covered glacier system response to climate forcing.

2021 ◽  
Author(s):  
Purushottam Kumar Garg ◽  
Aparna Shukla ◽  
Santosh Kumar Rai ◽  
Jairam Singh Yadav

<p>This study presents field evidences (October 2018) and remote sensing measurements (2000-2020) to show stagnant conditions of lower ablation zone (LAZ) of the ‘companion glacier’, central Himalaya, India and its implication on the morphological evolution. The Companion glacier is named so as it accompanied the Chorabari glacier (widely studied benchmark glacier in the central Himalaya) in the distant past. Supraglacial debris thickness, supraglacial ponds anf other morphological features (e.g. lateral moraine height, supraglacial mounds) were measured/observed in the field. Glacier area, length, debris extent, surface elevation change and surface ice velocity were estimated using satellite remote sensing data from Landsat-TM/ETM+/OLI, Sentinel-MSI, Terra-ASTER and SRTM, Cartosat-1 and Google Earth images. Results show that the glacier has very small accumulation area and it is mainly fed by avalanches. The headwall of glacier is very steep which causes frequent avalanches leading to voluminous debris addition to the glacier system. Consequently, about 80% area of the glacier is debris-covered. The debris is very thick in the LAZ exceeding several meters in the LAZ and comprised of big boulders making debris thickness measurements practically impossible particularly in the snout region. However, debris thickness decreases with increasing distance from the snout and is in the order of 20-40 cm at about 2.5 km upglacier. The huge debris cover has protected the glacier ice from rapid melting. That’s why surface lowering of the glacier is less as compared to nearby Chorabari glacier. Moreover, due to (a) less mass supply from upper reaches and (b) huge debris cover, the glacier movement is very slow. The movement is too low that is allowed vegetation (some big grasses with wooded stems) to grow and survive on the glacier surface. The slow moving LAZ also causing bulging on the upper ablation zone (UAZ). Consequently, several mounds have developed on the UAZ. Thin debris slides down from mounds exposing the ice underneath for melting. Owing to these processes, spot melting is now a dominant mechanism of glacier wastage in the companion glacier. Thus, it can be summarized that careful field observations along with remote sensing estimates can be very important for understanding the glacier evolution.</p>


2018 ◽  
Vol 12 (1) ◽  
pp. 189-204 ◽  
Author(s):  
Anna Wirbel ◽  
Alexander H. Jarosch ◽  
Lindsey Nicholson

Abstract. Glaciers with extensive surface debris cover respond differently to climate forcing than those without supraglacial debris. In order to include debris-covered glaciers in projections of glaciogenic runoff and sea level rise and to understand the paleoclimate proxy recorded by such glaciers, it is necessary to understand the manner and timescales over which a supraglacial debris cover develops. Because debris is delivered to the glacier by processes that are heterogeneous in space and time, and these debris inclusions are altered during englacial transport through the glacier system, correctly determining where, when and how much debris is delivered to the glacier surface requires knowledge of englacial transport pathways and deformation. To achieve this, we present a model of englacial debris transport in which we couple an advection scheme to a full-Stokes ice flow model. The model performs well in numerical benchmark tests, and we present both 2-D and 3-D glacier test cases that, for a set of prescribed debris inputs, reproduce the englacial features, deformation thereof and patterns of surface emergence predicted by theory and observations of structural glaciology. In a future step, coupling this model to (i) a debris-aware surface mass balance scheme and (ii) a supraglacial debris transport scheme will enable the co-evolution of debris cover and glacier geometry to be modelled.


2020 ◽  
Author(s):  
Anna Wirbel ◽  
Lindsey Nicholson ◽  
Christoph Mayer ◽  
Astrid Lambrecht

<p><strong>The challenge of non-stationary feedbacks within the response of debris-covered glaciers to climate forcing</strong></p><p>Debris-covered glaciers are a feature of many mountain ranges around the world and their proportion is expected to increase under continued climate warming.</p><p>The impact of debris cover on glacier behavior, via its profound modification of the glacier ablation regime, causes debris-covered glaciers to respond to the same climate forcing in a markedly different way to clean ice glaciers. In order to better understand how debris cover impacts the glacier’s response to climate forcing, we revisit the concept of steady state and examine it for a debris-covered glacier system. We present simple modeling results to explore how the development and evolution of debris cover affects the potential for steady-state and how feedbacks instigated by supraglacial debris cover complicate the glacier’s response to a prescribed steady climate. These investigations highlight the non-stationarity induced by the presence of debris and as a result, that debris cannot be considered as a static component, as it is a highly dynamic component which affects the glacier system in different ways.</p><p><br><br></p>


2017 ◽  
Author(s):  
Anna Wirbel ◽  
Alexander Helmut Jarosch ◽  
Lindsey Nicholson

Abstract. Glaciers with extensive surface debris cover respond differently to climate forcing than those without supraglacial debris. In order to include debris-covered glaciers in projections of glaciogenic runoff and sea-level rise, and to understand the paleoclimate proxy recorded by such glaciers it is necessary to understand the manner and timescales over which a supraglacial debris cover develops. As debris is delivered to the glacier by processes that are heterogeneous in space and time, and these debris inclusions are altered during englacial transport through the glacier system, correctly determining where, when, and how much, debris is delivered to the glacier surface requires that the englacial transport pathways and deformation can be known. To achieve this, we present a model of englacial debris transport in which we couple an advection scheme to a full-Stokes ice flow model. The model performs well in numerical benchmark tests, and we present both 2D and 3D steady-state glacier test cases that, for a set of prescribed debris inputs, reproduce the englacial features, deformation thereof, and patterns of surface emergence predicted by theory and observations of structural glaciology. In a future step, coupling this model to a (i) debris-aware surface mass-balance scheme and (ii) supraglacial debris transport scheme will enable the co-evolution of debris-cover and glacier geometry to be modelled.


2018 ◽  
Author(s):  
Bertie W. J. Miles ◽  
Chris R. Stokes ◽  
Stewart S. R. Jamieson

Abstract. Cook Glacier drains a large proportion of the Wilkes Subglacial Basin in East Antarctica, a region thought to be vulnerable to marine ice sheet instability and with potential to make a significant contribution to sea-level. Despite its importance, there have been very few observations of its longer-term behaviour (e.g. of velocity or changes at its ice front). Here we use a variety of satellite imagery to produce a time-series of ice-front position change from 1947–2017 and ice velocity from 1973–2017. Cook Glacier has two distinct outlets (termed East and West) and we observe the near-complete loss of the Cook West Ice Shelf at some time between 1973 and 1989. This was associated with a doubling of the velocity of Cook West glacier, which may also be linked to previously published reports of inland thinning. The loss of the Cook West Ice Shelf is surprising given that the present-day ocean-climate conditions in the region are not typically associated with catastrophic ice shelf loss. However, we speculate that a more intense ocean-climate forcing in the mid-20th century may have been important in forcing its collapse. Since the loss of the Cook West Ice Shelf, the presence of landfast sea-ice and mélange in the newly formed embayment appears to be important in stabilising the glacier front and enabling periodic advances. We also observe a short-lived increase in velocity of Cook East between 2006 and 2007 which we link to the drainage of subglacial Lake Cook. Taken together, these observations suggest that the velocity, and hence discharge, of Cook Glacier is highly sensitive to changes at its terminus but a more detailed process-based analysis of this potentially vulnerable region requires further oceanic and bathymetric data.


2010 ◽  
Vol 4 (4) ◽  
pp. 435-445 ◽  
Author(s):  
M. D. Ananicheva ◽  
A. N. Krenke ◽  
R. G. Barry

Abstract. We studied contrasting glacier systems in continental (Orulgan, Suntar-Khayata and Chersky) mountain ranges, located in the region of the lowest temperatures in the Northern Hemisphere at the boundary of Atlantic and Pacific influences – and maritime ones (Kamchatka Peninsula) – under Pacific influence. Our purpose is to present a simple projection method to assess the main parameters of these glacier regions under climate change. To achieve this, constructed vertical profiles of mass balance (accumulation and ablation) based both on meteorological data for the 1950–1990s (baseline period) and ECHAM4 for 2049–2060 (projected period) are used, the latter – as a climatic scenario. The observations and scenarios were used to define the recent and future equilibrium line altitude and glacier terminus altitude level for each glacier system as well as areas and balance components. The altitudinal distributions of ice areas were determined for present and future, and they were used for prediction of glacier extent versus altitude in the system taking into account the correlation between the ELA and glacier-terminus level change. We tested two hypotheses of ice distribution versus altitude in mountain (valley) glaciers – "linear" and "non-linear". The results are estimates of the possible changes of the areas and morphological structure of northeastern Asia glacier systems and their mass balance characteristics for 2049–2060. Glaciers in the southern parts of northeastern Siberia and those covering small ranges in Kamchatka will likely disappear under the ECHAM4 scenario; the best preservation of glaciers will be on the highest volcanic peaks of Kamchatka. Finally, we compare characteristics of the stability of continental and maritime glacier systems under global warming.


2021 ◽  
Author(s):  
Andreas Linsbauer ◽  
Matthias Huss ◽  
Elias Hodel ◽  
Andreas Bauder ◽  
Mauro Fischer ◽  
...  

<p>With increasing anthropogenic greenhouse gas emissions and corresponding global warming, glaciers in Switzerland are shrinking rapidly as in many mountain ranges on Earth. Repeated glacier inventories are a key task to monitor such glacier changes and provide detailed information on the extent of glaciation, and important parameters such as area, elevation range, slope, aspect etc. for a given point or a period in time. Here we present the new Swiss Glacier Inventory (SGI2016) that has been acquired based on high-resolution aerial imagery and digital elevation models in cooperation with the Federal Office of Topography (swisstopo) and Glacier Monitoring in Switzerland (GLAMOS), bringing together topological and glaciological knowhow. We define the process, workflow and required glaciological adaptations to compile a highly accurate glacier inventory based on the digital Swiss topographic landscape model (swissTLM<sup>3D</sup>).</p><p>The SGI2016 provides glacier outlines (areas), supraglacial debris cover, ice divides and location points of all glaciers in Switzerland referring to the years 2013-2018, whereas most of the glacier outlines have been mapped based on aerial images acquired between 2015-2017 (75% in number and 87% in area), with the centre year 2016. The SGI2016 maps 1400 individual glacier entities with a total glacier surface area of 961 km<sup>2</sup> (whereof 11% / 104 km<sup>2</sup> are debris-covered) and constitutes the so far most detailed cartographic representation of glacier extent in Switzerland. Analysing the dependencies between topographic parameters and debris-cover fraction on the basis of individual glaciers reveals that short glaciers with a moderate mean slope and glaciers with a low median elevation tend to have high debris fractions. A change assessment between the SGI1973 and SGI2016 based on individual glacier entities affirms the largest relative area changes for small glaciers and for low-elevation glaciers, whereas the largest glaciers show small relative area changes, though large absolute changes. The analysis further indicates a tendency for glaciers with a high share of supraglacial debris to show larger relative area changes.</p><p>Despite of an observed strong glacier volume loss between 2010 and 2016, the total glacier surface area of the SGI2016 is somewhat larger than reported in the last Swiss glacier inventory SGI2010. Even though both inventories were created based on swisstopo aerial photographs, the additional data, tools, resources and methodologies used by the professional cartographers digitizing glacier outlines in 3D for the SGI2016, are able to explain the counter-intuitive difference between SGI2010 and SGI2016. A direct comparison of these two datasets is thus not meaningful, but an experiment where a representative glacier sample of the SGI2010 was re-assessed based on the approaches of the SGI2016 led to an upscaled total glacier surface area of 1010 km<sup>2</sup> for the Swiss Alps around 2010. This indicates an area loss of 49 km<sup>2</sup> between the two last Swiss glacier inventories. As swisstopo data products are and will be regularly updated, the SGI2016 is the first step towards a consistent and accurate data product of repeated glacier inventories in six-year time intervals that promises a high comparability for individual glaciers and glacier samples.</p>


2020 ◽  
Vol 66 (258) ◽  
pp. 543-555 ◽  
Author(s):  
Lindsey Nicholson ◽  
Ivana Stiperski

AbstractWe present the first direct comparison of turbulence conditions measured simultaneously over exposed ice and a 0.08 m thick supraglacial debris cover on Suldenferner, a small glacier in the Italian Alps. Surface roughness, sensible heat fluxes (~20–50 W m−2), latent heat fluxes (~2–10 W m−2), topology and scale of turbulence are similar over both glacier surface types during katabatic and synoptically disturbed conditions. Exceptions are sunny days when buoyant convection becomes significant over debris-covered ice (sensible heat flux ~ −100 W m−2; latent heat flux ~ −30 W m−2) and prevailing katabatic conditions are rapidly broken down even over this thin debris cover. The similarity in turbulent properties implies that both surface types can be treated the same in terms of boundary layer similarity theory. The differences in turbulence between the two surface types on this glacier are dominated by the radiative and thermal contrasts, thus during sunny days debris cover alters both the local surface turbulent energy fluxes and the glacier component of valley circulation. These variations under different flow conditions should be accounted for when distributing temperature fields for modeling applications over partially debris-covered glaciers.


2019 ◽  
Vol 13 (7) ◽  
pp. 1889-1909 ◽  
Author(s):  
Nico Mölg ◽  
Tobias Bolch ◽  
Andrea Walter ◽  
Andreas Vieli

Abstract. Debris-covered glaciers generally exhibit large, gently sloping, slow-flowing tongues. At present, many of these glaciers show high thinning rates despite thick debris cover. Due to the lack of observations, most existing studies have neglected the dynamic interactions between debris cover and glacier evolution over longer time periods. The main aim of this study is to reveal such interactions by reconstructing changes of debris cover, glacier geometry, flow velocities, and surface features of Zmuttgletscher (Switzerland), based on historic maps, satellite images, aerial photographs, and field observations. We show that debris cover extent has increased from ∼13 % to ∼32 % of the total glacier surface since 1859 and that in 2017 the debris is sufficiently thick to reduce ablation compared to bare ice over much of the ablation area. Despite the debris cover, the glacier-wide mass balance of Zmuttgletscher is comparable to that of debris-free glaciers located in similar settings, whereas changes in length and area have been small and delayed by comparison. Increased ice mass input in the 1970s and 1980s resulted in a temporary velocity increase, which led to a local decrease in debris cover extent, a lowering of the upper boundary of the ice-cliff zone, and a strong reduction in ice-cliff area, indicating a dynamic link between flow velocities, debris cover, and surface morphology. Since 2005, the lowermost 1.5 km of the glacier has been quasi-stagnant, despite a slight increase in the surface slope of the glacier tongue. We conclude that the long-term glacier-wide mass balance is mainly governed by climate. The debris cover governs the spatial pattern of elevation change without changing its glacier-wide magnitude, which we explain by the extended ablation area and the enhanced thinning in regions with thin debris further up-glacier and in areas with abundant meltwater channels and ice cliffs. At the same time rising temperatures lead to increasing debris cover and decreasing ice flux, thereby attenuating length and area losses.


2016 ◽  
Vol 62 (231) ◽  
pp. 94-102 ◽  
Author(s):  
IULIAN-HORIA HOLOBÂCĂ

The glacier system covering Europe's highest mountain, Elbrus, has exhibited an accelerated retreat since 1980. Some studies have related this retreat to a significant summer temperature increasing trend. Relief- and aspect-related parameters for the glacierized area have an important impact on glacier changes. In this paper, the changes in glacier area are identified, quantified and correlated with relief parameters for the period 1985–2007. Spatial analysis was performed using the GLAM-CD (Glacier Mapper – Change Detector) algorithm. The input data for this algorithm were Landsat 5 images, the Aster Global Digital Elevation and the glacier outlines from the GLIMS project (Global Land Ice Measurements from Space). Regression analyses between glacier area losses and relief-related parameters indicate a significant positive relation with the altitude and a significant negative relation with the glacier surface area. In this context, we used a correlated component regression to model these relations. The model explains >50% of the total variation.


Sign in / Sign up

Export Citation Format

Share Document