scholarly journals The Causes of Debris-Covered Glacier Thinning: Evidence for the Importance of Ice Dynamics From Kennicott Glacier, Alaska

2021 ◽  
Vol 9 ◽  
Author(s):  
Leif S. Anderson ◽  
William H. Armstrong ◽  
Robert S. Anderson ◽  
Dirk Scherler ◽  
Eric Petersen

The cause of debris-covered glacier thinning remains controversial. One hypothesis asserts that melt hotspots (ice cliffs, ponds, or thin debris) increase thinning, while the other posits that declining ice flow leads to dynamic thinning under thick debris. Alaska’s Kennicott Glacier is ideal for testing these hypotheses, as ice cliffs within the debris-covered tongue are abundant and surface velocities decline rapidly downglacier. To explore the cause of patterns in melt hotspots, ice flow, and thinning, we consider their evolution over several decades. We compile a wide range of ice dynamical and mass balance datasets which we cross-correlate and analyze in a step-by-step fashion. We show that an undulating bed that deepens upglacier controls ice flow in the lower 8.5 km of Kennicott Glacier. The imposed velocity pattern strongly affects debris thickness, which in turn leads to annual melt rates that decline towards the terminus. Ice cliff abundance correlates highly with the rate of surface compression, while pond occurrence is strongly negatively correlated with driving stress. A new positive feedback is identified between ice cliffs, streams and surface topography that leads to chaotic topography. As the glacier thinned between 1991 and 2015, surface melt in the study area decreased, despite generally rising air temperatures. Four additional feedbacks relating glacier thinning to melt changes are evident: the debris feedback (negative), the ice cliff feedback (negative), the pond feedback (positive), and the relief feedback (positive). The debris and ice cliff feedbacks, which are tied to the change in surface velocity in time, likely reduced melt rates in time. We show this using a new method to invert for debris thickness change and englacial debris content (∼0.017% by volume) while also revealing that declining speeds and compressive flow led to debris thickening. The expansion of debris on the glacier surface follows changes in flow direction. Ultimately, glacier thinning upvalley from the continuously debris-covered portion of Kennicott Glacier, caused by mass balance changes, led to the reduction of flow into the study area. This caused ice emergence rates to decline rapidly leading to the occurrence of maximum, glacier-wide thinning under thick, insulating debris.

2019 ◽  
Author(s):  
Leif S. Anderson ◽  
Robert S. Anderson ◽  
Pascal Buri ◽  
William H. Armstrong

Abstract. The mass balance of many Alaskan glaciers is perturbed by debris cover. Yet the effect of debris on glacier response to climate change in Alaska has largely been overlooked. In three companion papers we assess the role of debris, ice dynamics, and surface processes in thinning Kennicott Glacier. In Part A, we report in situ measurements from the glacier surface. In Part B, we develop a method to delineate ice cliffs using high-resolution imagery and produce distributed mass balance estimates. In Part C we explore feedbacks that contribute to glacier thinning. Here in Part A, we describe data collected in the summer of 2011. We measured debris thickness (109 locations), sub-debris melt (74), and ice cliff backwasting (60) data from the debris-covered tongue. We also measured air-temperature (3 locations) and internal-debris temperature (10). The mean debris thermal conductivity was 1.06 W (m C)−1, increasing non-linearly with debris thickness. Mean debris thicknesses increase toward the terminus and margin where surface velocities are low. Despite the relatively high air temperatures above thick debris, the melt-insulating effect of debris dominates. Sub-debris melt rates ranged from 6.5 cm d−1 where debris is thin to 1.25 cm d−1 where debris is thick near the terminus. Ice cliff backwasting rates varied from 3 to 14 cm d−1 with a mean of 7.1 cm d−1 and tended to increase as elevation declined and debris thickness increased. Ice cliff backwasting rates are similar to those measured on debris-covered glaciers in High Mountain Asia and the Alps.


1999 ◽  
Vol 45 (151) ◽  
pp. 575-583 ◽  
Author(s):  
Andreas Kääb ◽  
Martin Funk

AbstractThe kinematic boundary condition al the glacier surface can be used to give glacier mass balance at a point as a function of changes in the surface elevation, and of the horizontal and vertical velocities. Vertical velocity can in turn be estimated from basal slope, basal ice velocity and surface strain. In a pilot study on the tongue of Griesgletscher, Swiss Alps, the applicability of the relation for modelling area-wide ice flow and mass-balance distribution is tested. The key input of the calculations, i.e. the area-wide surface velocity field, is obtained using a newly developed photogrammetric technique. Ice thickness is derived from radar-echo soundings. Error estimates and comparisons with stake measurements show an average accuracy of approximately ±0.3 ma-1for the calculated vertical ice velocity at the surface and ±0.7 ma-1for the calculated mass balance. Due to photogrammetric restrictions and model-inherent sensitivities the applied model appeared to be most suitable for determining area-wide mass balance and ice flow on flat-lying ablation areas, but is so far not very well suited for steep ablation areas and most parts of accumulation areas. Nevertheless, the study on Griesgletscher opens a new and promising perspective for the monitoring of spatial and temporal glacier mass-balance variations.


2018 ◽  
Vol 64 (245) ◽  
pp. 450-464 ◽  
Author(s):  
COLLEEN A. MORTIMER ◽  
MARTIN SHARP ◽  
WESLEY VAN WYCHEN

ABSTRACTRepeat airborne laser altimetry measurements show widespread thinning (surface lowering) of glaciers in Canada's Queen Elizabeth Islands since 1995. Thinning rates averaged for 50 m elevation bins, were more than three times higher during the period 2005/06 to 2012/14 pentad than during the previous two pentads. Strongly negative thickness change (dh/dt) anomalies from 2005/06 to 2012/14, relative to the 1995–2012/14 mean, suggest that most of the measured thinning occurred during the most recent 5–6 year period when mean summer land surface temperatures (LSTs) were anomalously high and the mean summer black-sky shortwave broadband albedos (BSA) were anomalously low, relative to the 2000/01–15/16 period, and upper-air (700 hPa) and near surface (2 m) air temperatures were between 0.8°C and 1.5°C higher than 1995–2012 mean. Comparisons of dh/dt with mean summer LST and BSA measurements from the Moderate Resolution Imaging Spectroradiometer and with surface longitudinal strain rates computed from surface velocity fields derived from RADARSAT 1/2 and Landat-7 ETM + data suggest that surface elevation changes were driven mainly by changes in climate. An exception to this occurs along many fast-flowing outlet glaciers where ice dynamics appear also to have played an important role in surface elevation changes.


2018 ◽  
Vol 64 (246) ◽  
pp. 568-582 ◽  
Author(s):  
GABRIELA COLLAO-BARRIOS ◽  
FABIEN GILLET-CHAULET ◽  
VINCENT FAVIER ◽  
GINO CASASSA ◽  
ETIENNE BERTHIER ◽  
...  

ABSTRACTWe simulate the ice dynamics of the San Rafael Glacier (SRG) in the Northern Patagonia Icefield (46.7°S, 73.5°W), using glacier geometry obtained by airborne gravity measurements. The full-Stokes ice flow model (Elmer/Ice) is initialized using an inverse method to infer the basal friction coefficient from a satellite-derived surface velocity mosaic. The high surface velocities (7.6 km a−1) near the glacier front are explained by low basal shear stresses (<25 kPa). The modelling results suggest that 98% of the surface velocities are due to basal sliding in the fast-flowing glacier tongue (>1 km a−1). We force the model using different surface mass-balance scenarios taken or adapted from previous studies and geodetic elevation changes between 2000 and 2012. Our results suggest that previous estimates of average surface mass balance over the entire glacier (Ḃ) were likely too high, mainly due to an overestimation in the accumulation area. We propose that most of SRG imbalance is due to the large ice discharge (−0.83 ± 0.08 Gt a−1) and a slightly positiveḂ(0.08 ± 0.06 Gt a−1). The committed mass-loss estimate over the next century is −0.34 ± 0.03 Gt a−1. This study demonstrates that surface mass-balance estimates and glacier wastage projections can be improved using a physically based ice flow model.


2019 ◽  
Author(s):  
Leif S. Anderson ◽  
William H. Armstrong ◽  
Robert S. Anderson ◽  
Pascal Buri

Abstract. The mass balance of many valley glaciers is enhanced by the presence of melt hotspots within otherwise continuous debris cover. We assess the effect of debris, melt hotspots, and ice dynamics on the thinning of Kennicott Glacier in three companion papers. In Part A we report in situ measurements from the debris-covered tongue. In Part B, we develop a method to delineate ice cliffs using high-resolution imagery and produce distributed mass balance estimates. Here in Part C we describe feedbacks controlling rapid thinning under thick debris. Despite the extreme abundance of ice cliffs on Kennicott Glacier, average melt rates are strongly suppressed downglacier due to thick debris. The estimated melt pattern therefore appears to reflect Østrem’s curve (the debris thickness-melt relationship). As Kennicott Glacier has thinned over the last century Østrem’s curve has manifested itself in two process domains on the glacier surface. The portion of the glacier affected by the upper-limb of Østrem’s curve corresponds to high melt, melt gradients, and ice dynamics, as well as high ice cliff and stream occurrence. The portion of the glacier affected by the lower-limb of Østrem’s curve corresponds to low melt, melt gradients, and ice dynamics, as well as high ice cliff and stream occurrence. The upglacier end of the zone of maximum thinning on Kennicott Glacier occurs at the boundary between these process domains and the bend in Østrem’s curve. The expansion of debris upglacier appears to be linked to changes in the surface velocity pattern through time. In response to climate warming, debris itself may therefore control where rapid thinning occurs on debris-covered glaciers. Ice cliffs are most abundant at the upglacier end of the zone of maximum thinning.


1999 ◽  
Vol 45 (151) ◽  
pp. 575-583 ◽  
Author(s):  
Andreas Kääb ◽  
Martin Funk

AbstractThe kinematic boundary condition al the glacier surface can be used to give glacier mass balance at a point as a function of changes in the surface elevation, and of the horizontal and vertical velocities. Vertical velocity can in turn be estimated from basal slope, basal ice velocity and surface strain. In a pilot study on the tongue of Griesgletscher, Swiss Alps, the applicability of the relation for modelling area-wide ice flow and mass-balance distribution is tested. The key input of the calculations, i.e. the area-wide surface velocity field, is obtained using a newly developed photogrammetric technique. Ice thickness is derived from radar-echo soundings. Error estimates and comparisons with stake measurements show an average accuracy of approximately ±0.3 ma-1 for the calculated vertical ice velocity at the surface and ±0.7 ma-1 for the calculated mass balance. Due to photogrammetric restrictions and model-inherent sensitivities the applied model appeared to be most suitable for determining area-wide mass balance and ice flow on flat-lying ablation areas, but is so far not very well suited for steep ablation areas and most parts of accumulation areas. Nevertheless, the study on Griesgletscher opens a new and promising perspective for the monitoring of spatial and temporal glacier mass-balance variations.


2009 ◽  
Vol 55 (191) ◽  
pp. 422-430 ◽  
Author(s):  
Daniel Farinotti ◽  
Matthias Huss ◽  
Andreas Bauder ◽  
Martin Funk ◽  
Martin Truffer

AbstractSound knowledge of the ice volume and ice-thickness distribution of a glacier is essential for many glaciological applications. However, direct measurements of ice thickness are laborious, not feasible everywhere and necessarily restricted to a small number of glaciers. In this paper, we present a method to estimate the ice-thickness distribution and the total ice volume of alpine glaciers. This method is based on glacier mass turnover and principles of ice-flow mechanics. The required input data are the glacier surface topography, the glacier outline and a set of borders delineating different ‘ice-flow catchments’. Three parameters describe the distribution of the ‘apparent mass balance’, which is defined as the difference between the glacier surface mass balance and the rate of ice-thickness change, and two parameters define the ice-flow dynamics. The method was developed and validated on four alpine glaciers located in Switzerland, for which the bedrock topography is partially known from radio-echo soundings. The ice thickness along 82 cross-profiles can be reproduced with an average deviation of about 25% between the calculated and the measured ice thickness. The cross-sectional areas differ by less than 20% on average. This shows the potential of the method for estimating the ice-thickness distribution of alpine glaciers without the use of direct measurements.


2020 ◽  
Author(s):  
Ann Rowan ◽  
David Egholm ◽  
Duncan Quincey ◽  
Bryn Hubbard ◽  
Evan Miles ◽  
...  

&lt;p&gt;Thick supraglacial debris covers the ablation areas of many large Himalayan glaciers, particularly those in the Everest region where debris is typically several metres thick. Sustained mass loss from these high-elevation debris-covered glaciers is causing supraglacial debris layers to expand and thicken. However, at the same time, regional satellite observations have demonstrated that debris-covered glaciers in High Mountain Asia are currently losing mass at the same rate as clean-ice glaciers. This greater than expected mass loss&amp;#8212;sometimes referred to as the &amp;#8220;debris-cover anomaly&amp;#8221;&amp;#8212;could be due to surface processes that locally enhance ablation, including the formation and decay of ice cliffs and supraglacial ponds.&lt;/p&gt;&lt;p&gt;We tested the hypothesis that the presence of ice cliffs and supraglacial ponds is responsible for the rapid decay of debris-covered Himalayan glaciers, using a numerical glacier model that includes the feedbacks between debris transport, mass balance and ice flow. We show that parameterising differential ablation processes in our higher-order ice flow model of Khumbu Glacier in Nepal does increase glacier-wide mass loss, but is not sufficient to match the observed glacier surface elevation change between 1984 and 2015 CE. Additional mass balance forcing is required to simulate the remaining mass balance change, which may represent the impact of rising air temperatures on englacial and supraglacial hydrology or englacial ice temperatures. Under a moderate future warming scenario (RCP4.5), Khumbu Glacier is projected to lose 59% of ice volume by 2100 CE, and 94% by 2200 CE accompanied by a dynamic shutdown that causes the death of this iconic glacier by 2160 CE.&lt;/p&gt;


2018 ◽  
Vol 64 (248) ◽  
pp. 969-976 ◽  
Author(s):  
J. W. SANDERS ◽  
K. M. CUFFEY ◽  
K. R. MACGREGOR ◽  
J. L. KAVANAUGH ◽  
C. F. DOW

ABSTRACTFollowing pioneering work in Norway, cirque glaciers have widely been viewed as rigidly rotating bodies. This model is incorrect for basin-filling cirque glaciers, as we have demonstrated at West Washmawapta Glacier, a small glacier in the Canadian Rocky Mountains. Here we report observations at the same glacier that assess whether complex temporal variations of flow also occur. For parts of three summers, we measured daily displacements of the glacier surface. In one year, four short-duration speed-up events were recorded. Three of the events occurred during the intervals of warmest weather, when melt was most rapid; the fourth event occurred immediately following heavy rain. We interpret the speed-up events as manifestations of enhanced water inputs to the glacier bed and associated slip lubrication by increased water volumes and pressures. No further speed-ups occurred in the final month of the melt season, despite warm temperatures and several rainstorms; the dominant subglacial water system likely transformed from one of poorly connected cavities to one with an efficient channel network. The seasonal evolution of hydrology and flow resembles behaviors documented at other, larger temperate glaciers and indicates that analyses of cirque erosion cannot rely on simple assumptions about ice dynamics.


2011 ◽  
Vol 5 (1) ◽  
pp. 299-313 ◽  
Author(s):  
G. E. Flowers ◽  
N. Roux ◽  
S. Pimentel ◽  
C. G. Schoof

Abstract. Glacier surges are a well-known example of an internal dynamic oscillation whose occurrence is not a direct response to the external climate forcing, but whose character (i.e. period, amplitude, mechanism) may depend on the glacier's environmental or climate setting. We examine the dynamics of a small (∼5 km2) valley glacier in Yukon, Canada, where two previous surges have been photographically documented and an unusually slow surge is currently underway. To characterize the dynamics of the present surge, and to speculate on the future of this glacier, we employ a higher-order flowband model of ice dynamics with a regularized Coulomb-friction sliding law in both diagnostic and prognostic simulations. Diagnostic (force balance) calculations capture the measured ice-surface velocity profile only when non-zero basal water pressures are prescribed over the central region of the glacier, coincident with where evidence of the surge has been identified. This leads to sliding accounting for 50–100% of the total surface motion in this region. Prognostic simulations, where the glacier geometry evolves in response to a prescribed surface mass balance, reveal a significant role played by a bedrock ridge beneath the current equilibrium line of the glacier. Ice thickening occurs above the ridge in our simulations, until the net mass balance reaches sufficiently negative values. We suggest that the bedrock ridge may contribute to the propensity for surges in this glacier by promoting the development of the reservoir area during quiescence, and may permit surges to occur under more negative balance conditions than would otherwise be possible. Collectively, these results corroborate our interpretation of the current glacier flow regime as indicative of a slow surge that has been ongoing for some time, and support a relationship between surge incidence or character and the net mass balance. Our results also highlight the importance of glacier bed topography in controlling ice dynamics, as observed in many other glacier systems.


Sign in / Sign up

Export Citation Format

Share Document