scholarly journals Numerical Assessments of Excess Ice Impacts on Permafrost and Greenhouse Gases in a Siberian Tundra Site Under a Warming Climate

2021 ◽  
Vol 9 ◽  
Author(s):  
Hotaek Park ◽  
Alexander N. Fedorov ◽  
Pavel Konstantinov ◽  
Tetsuya Hiyama

Excess ice that exists in forms such as ice lenses and wedges in permafrost soils is vulnerable to climate warming. Here, we incorporated a simple representation of excess ice in a coupled hydrological and biogeochemical model (CHANGE) to assess how excess ice affects permafrost thaw and associated hydrologic responses, and possible impacts on carbon dioxide and methane (CH4) fluxes. The model was used to simulate a moss-covered tundra site in northeastern Siberia with various vertical initializations of excess ice under a future warming climate scenario. Simulations revealed that the warming climate induced deepening of the active layer thickness (ALT) and higher vegetation productivity and heterotrophic respiration from permafrost soil. Meanwhile, excess ice temporarily constrained ALT deepening and thermally stabilized permafrost because of the highest latent heat effect obtained under these conditions. These effects were large under conditions of high excess ice content distributed in deeper soil layers, especially when covered by moss and thinner snow. Once ALT reached to the layer of excess ice, it was abruptly melted, leading to ground surface subsidence over 15–20 years. The excess ice meltwater caused deeper soil to wet and contributed to talik formation. The anaerobic wet condition was effective to high CH4 emissions. However, as the excess ice meltwater was connected to the subsurface flow, the resultant lower water table limited the CH4 efflux. These results provide insights for interactions between warming climate, permafrost excess ice, and carbon and CH4 fluxes in well-drained conditions.

2020 ◽  
Author(s):  
H. Brendan O'Neill ◽  
Yu Zhang

<p>Ground surface subsidence caused by the melt of excess ice is a key geomorphic process in permafrost regions. Subsidence can damage infrastructure, alter ecology and hydrology, and influence carbon cycling. The Geological Survey of Canada maintains a network of thaw tubes in northwestern Canada, which records annual thaw penetration, active-layer thickness, and ground surface elevation changes at numerous sites. Measurements from the early 1990s from 17 sites in the Mackenzie Delta area have highlighted persistent increases in thaw penetration in response to rising air temperatures. These increases in thaw penetration have been accompanied by significant ground surface subsidence (~5 to 20 cm) at 10 ice rich sites, with a median subsidence rate of 0.4 cm a<sup>-1</sup> (min: 0.2, max: 0.8 cm a<sup>-1</sup>). Here we present preliminary results comparing these long-term field data to simulations for two observation sites using the Northern Ecosystem Soil Temperature (NEST) model. NEST has been modified to include a routine that accounts for ground surface subsidence caused by the melt of excess ground ice. The excess ice content of upper permafrost in the simulations was estimated based on ratios between thaw penetration and subsidence measured at each thaw tube. The NEST simulations begin in 1901, and there is little ground surface subsidence until the 1980s. The simulated rate of ground surface subsidence increases in the 1990s. The modelled ground surface subsidence is in good agreement with the measured annual magnitudes and longer-term patterns over the measurement period from 1992 to 2017. This preliminary assessment indicates that the modified NEST model is capable of predicting gradual thaw subsidence in ice-rich permafrost environments over decadal timescales.</p>


2016 ◽  
Vol 29 (2) ◽  
pp. 183-198 ◽  
Author(s):  
Caitlin Lapalme ◽  
Denis Lacelle ◽  
Wayne Pollard ◽  
David Fisher ◽  
Alfonso Davila ◽  
...  

AbstractGround ice is one of the most important and dynamic geologic components of permafrost; however, few studies have investigated the distribution and origin of ground ice in the McMurdo Dry Valleys of Antarctica. In this study, ice-bearing permafrost cores were collected from 18 sites in University Valley, a small hanging glacial valley in the Quartermain Mountains. Ground ice was found to be ubiquitous in the upper 2 m of permafrost soils, with excess ice contents reaching 93%, but ground ice conditions were not homogeneous. Ground ice content was variable within polygons and along the valley floor, decreasing in the centres of polygons and increasing in the shoulders of polygons towards the mouth of the valley. Ground ice also had different origins: vapour deposition, freezing of partially evaporated snow meltwater and buried glacier ice. The variability in the distribution and origin of ground ice can be attributed to ground surface temperature and moisture conditions, which separate the valley into distinct zones. Ground ice of vapour-deposition origin was predominantly situated in perennially cryotic zones, whereas ground ice formed by the freezing of evaporated snow meltwater was predominantly found in seasonally non-cryotic zones.


Author(s):  
Zhaohui Joey Yang ◽  
Kannon C. Lee ◽  
Haibo Liu

AbstractAlaska’s North Slope is predicted to experience twice the warming expected globally. When summers are longer and winters are shortened, ground surface conditions in the Arctic are expected to change considerably. This is significant for Arctic Alaska, a region that supports surface infrastructure such as energy extraction and transport assets (pipelines), buildings, roadways, and bridges. Climatic change at the ground surface has been shown to impact soil layers beneath through the harmonic fluctuation of the active layer, and warmer air temperature can result in progressive permafrost thaw, leading to a deeper active layer. This study attempts to assess climate change based on the climate model data from the fifth phase of the Coupled Model Intercomparison Project and its impact on a permafrost environment in Northern Alaska. The predicted air temperature data are analyzed to evaluate how the freezing and thawing indices will change due to climate warming. A thermal model was developed that incorporated a ground surface condition defined by either undisturbed intact tundra or a gravel fill surface and applied climate model predicted air temperatures. Results indicate similar fluctuation in active layer thickness and values that fall within the range of minimum and maximum readings for the last quarter-century. It is found that the active layer thickness increases, with the amount depending on climate model predictions and ground surface conditions. These variations in active layer thickness are then analyzed by considering the near-surface frozen soil ice content. Analysis of results indicates that thaw strain is most significant in the near-surface layers, indicating that settlement would be concurrent with annual thaw penetration. Moreover, ice content is a major factor in the settlement prediction. This assessment methodology, after improvement, and the results can help enhance the resilience of the existing and future new infrastructure in a changing Arctic environment.


2021 ◽  
Author(s):  
Joey Yang ◽  
Kannon C. Lee ◽  
Haibo Liu

Abstract Alaska’s North Slope is predicted to experience twice the warming expected globally. When summers are longer and winters are shortened, ground surface conditions in the Arctic are expected to change considerably. This is significant for Arctic Alaska, a region that supports surface infrastructure such as energy extraction and transport assets (pipelines), buildings, roadways, and bridges. Climatic change at the ground surface has been shown to infiltrate soil layers beneath through the harmonic fluctuation of the active layer. Past studies found that warmer air temperature resulted in increasingly deeper thaw, leading to a deeper active layer. This study attempts to assess climate change based on the climate model data from the fifth phase of the Coupled Model Intercomparison Project and its impact on a study site on the North Slope. The predicted air temperature data are analyzed to evaluate how the freezing and thawing indices will change due to climate warming. A thermal model was developed that incorporated a ground surface condition defined by either undisturbed intact tundra or a gravel fill surface and applied climate model predicted air temperatures. Results indicate similar fluctuation in active layer thickness and values that fall within the range of minimum and maximum readings. It is found that the active layer thickens when the ground surface is either gravel fill or undisturbed tundra, but its thickness varies based on climate model predictions. These variations in active layer thickness are then analyzed by considering the near-surface frozen soil ice content. Analysis of results indicates that strain is most significant in the near-surface layers during thaw, indicating that settlement would be concurrent with annual thaw penetration. From this study, the climate model predicted air temperatures for a warming Arctic suggest that the thaw of near-surface frozen ground is largely dependent on ground surface conditions and the thermal properties of soil. Moreover, ice content is a major factor in the settlement predictions on Alaska’s North Slope. This study's results can help enhance the resilience of the existing and future new infrastructure in a changing Arctic environment.


2021 ◽  
Vol 14 (4) ◽  
pp. 55-66 ◽  
Author(s):  
Valery I. Grebenets ◽  
Vasily A. Tolmanov ◽  
Dmitry A. Streletskiy

This paper provides information on active layer thickness (ALT) dynamics, or seasonal thawing above permafrost, from a Circumpolar Active Layer Monitoring (CALM) site near the city of Norilsk on the Taimyr Peninsula (north-central Siberia) and the influences of meteorological and landscape properties on these dynamics under a warming climate, from 2005 to 2020. The average ALT in loamy soils at this 1 ha CALM site over the past 16 years was 96 cm, higher than previous studies from 1980s conducted at the same location, which estimated ALT to be 80 cm. Increasing mean annual air temperatures in Norilsk correspond with the average ALT increasing trend of 1 cm/year for the observation period. Active layer development depends on summer thermal and precipitation regimes, time of snowmelt, micro-landscape conditions, the cryogenic structure (ice content) of soils, soil water content leading up to the freezing period, drainage, and other factors. Differences in ALT, within various micro landscape conditions can reach 200% in each of the observation periods.


2014 ◽  
Vol 8 (5) ◽  
pp. 4959-5013 ◽  
Author(s):  
A. Ekici ◽  
S. Chadburn ◽  
N. Chaudhary ◽  
L. H. Hajdu ◽  
A. Marmy ◽  
...  

Abstract. Modelling soil thermal dynamics at high latitudes and altitudes requires representations of specific physical processes such as snow insulation, soil freezing/thawing, as well as subsurface conditions like soil water/ice content and soil texture type. We have compared six different land models (JSBACH, ORCHIDEE, JULES, COUP, HYBRID8, LPJ-GUESS) at four different sites with distinct cold region landscape types (i.e. Schilthorn-Alpine, Bayelva-high Arctic, Samoylov-wet polygonal tundra, Nuuk-non permafrost Arctic) to quantify the importance of physical processes in capturing observed temperature dynamics in soils. This work shows how a range of models can represent distinct soil temperature regimes in permafrost and non-permafrost soils. Snow insulation is of major importance for estimating topsoil conditions and must be combined with accurate subsoil temperature dynamics to correctly estimate active layer thicknesses. Analyses show that land models need more realistic surface processes (such as detailed snow dynamics and moss cover with changing thickness/wetness) as well as better representations of subsoil thermal dynamics (i.e. soil heat transfer mechanism and correct parameterization of heat conductivity/capacities).


2020 ◽  
Author(s):  
Michela De Dominicis ◽  
Judith Wolf ◽  
Dina Sadykova ◽  
Beth Scott ◽  
Alexander Sadykov ◽  
...  

<p>The aim of this work is to analyse the potential impacts of tidal energy extraction on the marine environment. We wanted to put them in the broader context of the possibly greater and global ecological threat of climate change. Here, we present how very large (hypothetical) tidal stream arrays and a ''business as usual'' future climate scenario can change the hydrodynamics of a seasonally stratified shelf sea, and consequently modify ecosystem habitats and animals’ behaviour.</p><p>The Scottish Shelf Model, an unstructured grid three-dimensional ocean model, has been used to reproduce the present and the future state of the NW European continental shelf. While the marine biogeochemical model ERSEM (European Regional Seas Ecosystem Model) has been used to describe the corresponding biogeochemical conditions. Four scenarios have been modelled: present conditions and projected future climate in 2050, each with and without very large scale tidal stream arrays in Scottish Waters (UK). This allows us to evaluate the potential effect of climate change and large scale energy extraction on the hydrodynamics and biogeochemistry. We found that climate change and tidal energy extraction both act in the same direction, in terms of increasing stratification due to warming and reduced mixing, however, the effect of climate change is ten times larger. Additionally, the ecological costs and benefits of these contrasting pressures on mobile predator and prey marine species are evaluated using ecological statistical models.</p>


2021 ◽  
Author(s):  
Yan Hu ◽  
Stephan Harrison ◽  
Lin Liu ◽  
Joanne Laura Wood

Abstract. Rock glaciers contain significant amount of ground ice and serve as important freshwater resources as mountain glaciers melt in response to climate warming. However, current knowledge about ice content in rock glaciers has been acquired mainly from in situ investigations in limited study areas, which hinders a comprehensive understanding of ice storage in rock glaciers situated in remote mountains and over local or regional scales. In this study, we develop an empirical rheological model to infer ice content of rock glaciers using readily available input data, including rock glacier planar shape, surface slope angle, active layer thickness, and surface creep rate. We apply the model to infer the ice content of five rock glaciers in Khumbu and Lhotse Valleys, north-eastern Nepal. The inferred volumetric ice fraction ranges from 57.5 % to 92 %, with an average value between 71 % to 75.3 %. The total water volume equivalent in the study area lies between 10.61 and 16.54 million m3. Considering previous mapping results and extrapolating from our findings to the entire Nepalese Himalaya, the total amount of water stored in rock glaciers ranges from 8.97 to 13.98 billion m3, equivalent to a ratio of 1 : 17 between the rock glacier and glacier reservoirs. Due to the accessibility of the input parameters of the model developed in this study, it is promising to apply the approach to permafrost regions where previous information about ice content of rock glaciers is lacking.


2021 ◽  
Vol 13 (21) ◽  
pp. 4389
Author(s):  
Kazuyoshi Suzuki ◽  
Hotaek Park ◽  
Olga Makarieva ◽  
Hironari Kanamori ◽  
Masahiro Hori ◽  
...  

With permafrost warming, the observed discharge of the Kolyma River in northeastern Siberia decreased between 1930s and 2000; however, the underlying mechanism is not well understood. To understand the hydrological changes in the Kolyma River, it is important to analyze the long-term hydrometeorological features, along with the changes in the active layer thickness. A coupled hydrological and biogeochemical model was used to analyze the hydrological changes due to permafrost warming during 1979–2012, and the simulated results were validated with satellite-based products and in situ observational records. The increase in the active layer thickness by permafrost warming suppressed the summer discharge contrary to the increased summer precipitation. This suggests that the increased terrestrial water storage anomaly (TWSA) contributed to increased evapotranspiration, which likely reduced soil water stress to plants. As soil freeze–thaw processes in permafrost areas serve as factors of climate memory, we identified a two-year lag between precipitation and evapotranspiration via TWSA. The present results will expand our understanding of future Arctic changes and can be applied to Arctic adaptation measures.


2021 ◽  
Author(s):  
Jorrit Mesman ◽  
Ana Ayala ◽  
Stéphane Goyette ◽  
Jerome Kasparian ◽  
Rafael Marcé ◽  
...  

Extreme wind events affect lake phytoplankton amongst others by deepening the mixed layer and increasing internal nutrient loading. Both increases and decreases of phytoplankton biomass after storms have been observed, but the precise mechanisms driving these responses remain poorly understood or quantified. In this study, we coupled a one-dimensional physical model to a biogeochemical model to investigate the factors regulating short-term phytoplankton responses to summer storms, now and under expected high-temperature conditions. We simulated physical, chemical and biological dynamics in Lake Erken, Sweden, to take advantage of a long-term time series that we used to calibrate our model. We found that wind storms could increase or decrease the phytoplankton concentration one week after the storm, depending on antecedent lake physical and chemical conditions. Storms had little effect on phytoplankton biomass if the mixed layer was deep prior to storm exposure. Higher incoming shortwave radiation and hypolimnetic nutrient concentration boosted growth, whereas higher surface water temperatures decreased phytoplankton concentration after storms. Medium-intensity wind speeds resulted in more phytoplankton biomass after storms than high-intensity wind. Simulations under a future climate scenario did not show marked differences in the way wind affects phytoplankton growth following storms. Our study shows that storm impacts on lake phytoplankton are complex and likely to vary as a function of local environmental conditions.


Sign in / Sign up

Export Citation Format

Share Document