scholarly journals Large-Scale Landslide Susceptibility Mapping Using an Integrated Machine Learning Model: A Case Study in the Lvliang Mountains of China

2021 ◽  
Vol 9 ◽  
Author(s):  
Yin Xing ◽  
Jianping Yue ◽  
Zizheng Guo ◽  
Yang Chen ◽  
Jia Hu ◽  
...  

Integration of different models may improve the performance of landslide susceptibility assessment, but few studies have tested it. The present study aims at exploring the way to integrating different models and comparing the results among integrated and individual models. Our objective is to answer this question: Will the integrated model have higher accuracy compared with individual model? The Lvliang mountains area, a landslide-prone area in China, was taken as the study area, and ten factors were considered in the influencing factors system. Three basic machine learning models (the back propagation (BP), support vector machine (SVM), and random forest (RF) models) were integrated by an objective function where the weight coefficients among different models were computed by the gray wolf optimization (GWO) algorithm. 80 and 20% of the landslide data were randomly selected as the training and testing samples, respectively, and different landslide susceptibility maps were generated based on the GIS platform. The results illustrated that the accuracy expressed by the area under the receiver operating characteristic curve (AUC) of the BP-SVM-RF integrated model was the highest (0.7898), which was better than that of the BP (0.6929), SVM (0.6582), RF (0.7258), BP-SVM (0.7360), BP-RF (0.7569), and SVM-RF models (0.7298). The experimental results authenticated the effectiveness of the BP-SVM-RF method, which can be a reliable model for the regional landslide susceptibility assessment of the study area. Moreover, the proposed procedure can be a good option to integrate different models to seek an “optimal” result.


2021 ◽  
Vol 10 (2) ◽  
pp. 93
Author(s):  
Wei Xie ◽  
Xiaoshuang Li ◽  
Wenbin Jian ◽  
Yang Yang ◽  
Hongwei Liu ◽  
...  

Landslide susceptibility mapping (LSM) could be an effective way to prevent landslide hazards and mitigate losses. The choice of conditional factors is crucial to the results of LSM, and the selection of models also plays an important role. In this study, a hybrid method including GeoDetector and machine learning cluster was developed to provide a new perspective on how to address these two issues. We defined redundant factors by quantitatively analyzing the single impact and interactive impact of the factors, which was analyzed by GeoDetector, the effect of this step was examined using mean absolute error (MAE). The machine learning cluster contains four models (artificial neural network (ANN), Bayesian network (BN), logistic regression (LR), and support vector machines (SVM)) and automatically selects the best one for generating LSM. The receiver operating characteristic (ROC) curve, prediction accuracy, and the seed cell area index (SCAI) methods were used to evaluate these methods. The results show that the SVM model had the best performance in the machine learning cluster with the area under the ROC curve of 0.928 and with an accuracy of 83.86%. Therefore, SVM was chosen as the assessment model to map the landslide susceptibility of the study area. The landslide susceptibility map demonstrated fit with landslide inventory, indicated the hybrid method is effective in screening landslide influences and assessing landslide susceptibility.



2021 ◽  
Author(s):  
Rui Liu ◽  
Xin Yang ◽  
Chong Xu ◽  
Luyao Li ◽  
Xiangqiang Zeng

Abstract Landslide susceptibility mapping (LSM) is a useful tool to estimate the probability of landslide occurrence, providing a scientific basis for natural hazards prevention, land use planning, and economic development in landslide-prone areas. To date, a large number of machine learning methods have been applied to LSM, and recently the advanced Convolutional Neural Network (CNN) has been gradually adopted to enhance the prediction accuracy of LSM. The objective of this study is to introduce a CNN based model in LSM and systematically compare its overall performance with the conventional machine learning models of random forest, logistic regression, and support vector machine. Herein, we selected the Jiuzhaigou region in Sichuan Province, China as the study area. A total number of 710 landslides and 12 predisposing factors were stacked to form spatial datasets for LSM. The ROC analysis and several statistical metrics, such as accuracy, root mean square error (RMSE), Kappa coefficient, sensitivity, and specificity were used to evaluate the performance of the models in the training and validation datasets. Finally, the trained models were calculated and the landslide susceptibility zones were mapped. Results suggest that both CNN and conventional machine-learning based models have a satisfactory performance (AUC: 85.72% − 90.17%). The CNN based model exhibits excellent good-of-fit and prediction capability, and achieves the highest performance (AUC: 90.17%) but also significantly reduces the salt-of-pepper effect, which indicates its great potential of application to LSM.



2020 ◽  
Vol 198 ◽  
pp. 03023
Author(s):  
Xin Yang ◽  
Rui Liu ◽  
Luyao Li ◽  
Mei Yang ◽  
Yuantao Yang

Landslide susceptibility mapping is a method used to assess the probability and spatial distribution of landslide occurrences. Machine learning methods have been widely used in landslide susceptibility in recent years. In this paper, six popular machine learning algorithms namely logistic regression, multi-layer perceptron, random forests, support vector machine, Adaboost, and gradient boosted decision tree were leveraged to construct landslide susceptibility models with a total of 1365 landslide points and 14 predisposing factors. Subsequently, the landslide susceptibility maps (LSM) were generated by the trained models. LSM shows the main landslide zone is concentrated in the southeastern area of Wenchuan County. The result of ROC curve analysis shows that all models fitted the training datasets and achieved satisfactory results on validation datasets. The results of this paper reveal that machine learning methods are feasible to build robust landslide susceptibility models.



2020 ◽  
Vol 10 (11) ◽  
pp. 4016 ◽  
Author(s):  
Xudong Hu ◽  
Han Zhang ◽  
Hongbo Mei ◽  
Dunhui Xiao ◽  
Yuanyuan Li ◽  
...  

Landslide susceptibility mapping is considered to be a prerequisite for landslide prevention and mitigation. However, delineating the spatial occurrence pattern of the landslide remains a challenge. This study investigates the potential application of the stacking ensemble learning technique for landslide susceptibility assessment. In particular, support vector machine (SVM), artificial neural network (ANN), logical regression (LR), and naive Bayes (NB) were selected as base learners for the stacking ensemble method. The resampling scheme and Pearson’s correlation analysis were jointly used to evaluate the importance level of these base learners. A total of 388 landslides and 12 conditioning factors in the Lushui area (Southwest China) were used as the dataset to develop landslide modeling. The landslides were randomly separated into two parts, with 70% used for model training and 30% used for model validation. The models’ performance was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC) and statistical measures. The results showed that the stacking-based ensemble model achieved an improved predictive accuracy as compared to the single algorithms, while the SVM-ANN-NB-LR (SANL) model, the SVM-ANN-NB (SAN) model, and the ANN-NB-LR (ANL) models performed equally well, with AUC values of 0.931, 0.940, and 0.932, respectively, for validation stage. The correlation coefficient between the LR and SVM was the highest for all resampling rounds, with a value of 0.72 on average. This connotes that LR and SVM played an almost equal role when the ensemble of SANL was applied for landslide susceptibility analysis. Therefore, it is feasible to use the SAN model or the ANL model for the study area. The finding from this study suggests that the stacking ensemble machine learning method is promising for landslide susceptibility mapping in the Lushui area and is capable of targeting areas prone to landslides.



Landslides ◽  
2020 ◽  
Vol 17 (10) ◽  
pp. 2443-2453 ◽  
Author(s):  
Samuele Segoni ◽  
Giulio Pappafico ◽  
Tania Luti ◽  
Filippo Catani

AbstractThe literature about landslide susceptibility mapping is rich of works focusing on improving or comparing the algorithms used for the modeling, but to our knowledge, a sensitivity analysis on the use of geological information has never been performed, and a standard method to input geological maps into susceptibility assessments has never been established. This point is crucial, especially when working on wide and complex areas, in which a detailed geological map needs to be reclassified according to more general criteria. In a study area in Italy, we tested different configurations of a random forest–based landslide susceptibility model, accounting for geological information with the use of lithologic, chronologic, structural, paleogeographic, and genetic units. Different susceptibility maps were obtained, and a validation procedure based on AUC (area under receiver-operator characteristic curve) and OOBE (out of bag error) allowed us to get to some conclusions that could be of help for in future landslide susceptibility assessments. Different parameters can be derived from a detailed geological map by aggregating the mapped elements into broader units, and the results of the susceptibility assessment are very sensitive to these geology-derived parameters; thus, it is of paramount importance to understand properly the nature and the meaning of the information provided by geology-related maps before using them in susceptibility assessment. Regarding the model configurations making use of only one parameter, the best results were obtained using the genetic approach, while lithology, which is commonly used in the current literature, was ranked only second. However, in our case study, the best prediction was obtained when all the geological parameters were used together. Geological maps provide a very complex and multifaceted information; in wide and complex area, this information cannot be represented by a single parameter: more geology-based parameters can perform better than one, because each of them can account for specific features connected to landslide predisposition.



Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3312
Author(s):  
Jiaying Li ◽  
Weidong Wang ◽  
Yange Li ◽  
Zheng Han ◽  
Guangqi Chen

Landslide represents an increasing menace causing huge casualties and economic losses, and rainfall is a predominant factor inducing landslides. Landslide susceptibility assessment (LSA) is a commonly used and effective method to prevent landslide risk, however, the LSA does not analyze the impact of the rainfall on landslides which is significant and non-negligible. Therefore, the spatiotemporal LSA considering the inducing effect of rainfall is proposed to improve accuracy and applicability. In this study, the influencing factors are selected using the chi-square test, out-of-bag error and multicollinearity test. The spatial LSA are thus obtained using the random forest (RF) model, deep belief networks model and support vector machine, and compared using receiver operating characteristic curve and seed cell area index to determine the optimal assessment result. According to the heavy rainfall characteristics in the study area, the rainfall period is divided into four stages, and the effective rainfall model is employed to generate the rainfall impact (RI) maps of the four stages. The spatiotemporal LSAs are obtained by coupling the optimal spatial LSA and various RI maps and verified using the landslide warning map. The results demonstrate that the optimal spatiotemporal LSA is obtained using the spatial LSA of the RF model and temporal LSA of the rainfall data in the peak stage. It can predict the area where rainfall-induced landslides are likely to occur and prevent landslide risk.



PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241239
Author(s):  
Kai On Wong ◽  
Osmar R. Zaïane ◽  
Faith G. Davis ◽  
Yutaka Yasui

Background Canada is an ethnically-diverse country, yet its lack of ethnicity information in many large databases impedes effective population research and interventions. Automated ethnicity classification using machine learning has shown potential to address this data gap but its performance in Canada is largely unknown. This study conducted a large-scale machine learning framework to predict ethnicity using a novel set of name and census location features. Methods Using census 1901, the multiclass and binary class classification machine learning pipelines were developed. The 13 ethnic categories examined were Aboriginal (First Nations, Métis, Inuit, and all-combined)), Chinese, English, French, Irish, Italian, Japanese, Russian, Scottish, and others. Machine learning algorithms included regularized logistic regression, C-support vector, and naïve Bayes classifiers. Name features consisted of the entire name string, substrings, double-metaphones, and various name-entity patterns, while location features consisted of the entire location string and substrings of province, district, and subdistrict. Predictive performance metrics included sensitivity, specificity, positive predictive value, negative predictive value, F1, Area Under the Curve for Receiver Operating Characteristic curve, and accuracy. Results The census had 4,812,958 unique individuals. For multiclass classification, the highest performance achieved was 76% F1 and 91% accuracy. For binary classifications for Chinese, French, Italian, Japanese, Russian, and others, the F1 ranged 68–95% (median 87%). The lower performance for English, Irish, and Scottish (F1 ranged 63–67%) was likely due to their shared cultural and linguistic heritage. Adding census location features to the name-based models strongly improved the prediction in Aboriginal classification (F1 increased from 50% to 84%). Conclusions The automated machine learning approach using only name and census location features can predict the ethnicity of Canadians with varying performance by specific ethnic categories.



2020 ◽  
Author(s):  
Alev Mutlu ◽  
Furkan Goz

Abstract Landslide susceptibility assessment is the problem of determining the likelihood of a landslide occurrence in a particular area with respect to the geographical and morphological properties of the area. This paper presents a hybrid method, namely SkySlide, that incorporates clustering, skyline operator, classification and majority voting principle for region-scale landslide susceptibility assessment. Clustering and skyline operator are utilized to model landslides while classification and majority voting principle are utilized to assess landslide susceptibility. The contribution of the study is 2-fold. First, the proposed method requires properties of landslide-occurring data only to model landslides. Second, the proposed method is evaluated on imbalanced data and experimental results include performance metrics of imbalanced data. Experiments conducted on two real-life datasets show that clustering greatly improves performance of SkySlide. Experiments further demonstrate that SkySlide achieves higher class balance accuracy, Matthews correlation coefficient, geometric mean and bookmaker informedness scores compared with the most commonly used methods for landslide susceptibility assessment such as support vector machines, logistic regression and decision trees.



2019 ◽  
Vol 11 (22) ◽  
pp. 6323 ◽  
Author(s):  
Pham ◽  
Prakash ◽  
Chen ◽  
Ly ◽  
Ho ◽  
...  

The main objective of this study is to propose a novel hybrid model of a sequential minimal optimization and support vector machine (SMOSVM) for accurate landslide susceptibility mapping. For this task, one of the landslide prone areas of Vietnam, the Mu Cang Chai District located in Yen Bai Province was selected. In total, 248 landslide locations and 15 landslide-affecting factors were selected for landslide modeling and analysis. Predictive capability of SMOSVM was evaluated and compared with other landslide models, namely a hybrid model of the cascade generalization optimization-based support vector machine (CGSVM), individual models, such as support vector machines (SVM) and naïve Bayes trees (NBT). For validation, different quantitative criteria such as statistical based methods and area under the receiver operating characteristic curve (AUC) technique were used. Results of the study show that the SMOSVM model (AUC = 0.824) has the highest performance for landslide susceptibility mapping, followed by CGSVM (AUC = 0.815), SVM (AUC = 0.804), and NBT (AUC = 0.800) models, respectively. Thus, the proposed novel SMOSVM model is a promising method for better landslide susceptibility mapping and prediction, which can be applied also in other landslide prone areas.



Sign in / Sign up

Export Citation Format

Share Document