scholarly journals Thermokarst Landscape Development Detected by Multiple-Geospatial Data in Churapcha, Eastern Siberia

2021 ◽  
Vol 9 ◽  
Author(s):  
Yoshihiro Iijima ◽  
Takahiro Abe ◽  
Hitoshi Saito ◽  
Mathias Ulrich ◽  
Alexander N. Fedorov ◽  
...  

Thermokarst is a typical process that indicates widespread permafrost degradation in yedoma landscapes. The Lena-Aldan interfluvial area in Central Yakutia in eastern Siberia is now facing extensive landscape changes with surface subsidence due to thermokarst development during the past few decades. To clarify the spatial extent and rate of subsidence, multiple spatial datasets, including GIS and remote sensing observations, were used to analyze the Churapcha rural locality, which has a typical yedoma landscape in Central Yakutia. Land cover classification maps for 1945 and 2009 provide basic information on anthropogenic disturbance to the natural landscape of boreal forest and dry grassland. Interferometric synthetic aperture radar (InSAR) with ALOS-2/PALSAR-2 data revealed activated surface subsidence of 2 cm/yr in the disturbed area, comprising mainly abandoned agricultural fields. Remote sensing with an unmanned aerial system also provided high-resolution information on polygonal relief formed by thermokarst development at a disused airfield where InSAR analysis exhibited extensive subsidence. It is worth noting that some historically deforested areas have likely recovered to the original landscape without further thermokarst development. Spatial information on historical land-use change is helpful because most areas with thermokarst development correspond to locations where land was used by humans in the past. Going forward, the integrated analysis of geospatial information will be essential for assessing permafrost degradation.

2010 ◽  
Vol 19 (4) ◽  
pp. 106-116 ◽  
Author(s):  
P. K. S. C. Jayasinghe ◽  
H. A. Adornado ◽  
Masao Yoshida ◽  
D. A. L. Leelamanie

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Sunmin Lee ◽  
Sung-Hwan Park ◽  
Moung-Jin Lee ◽  
Taejung Song

The social and economic harm to North Korea caused by water-related disasters is increasing with the increase in the disasters worldwide. Despite the improvement of inter-Korean relations in recent years, the issue of water-related disasters, which can directly affect the lives of people, has not been discussed. With consideration of inter-Korean relations, a government-wide technical plan should be established to reduce the damage caused by water-related disasters. Therefore, the purpose of this study was to identify remote sensing and GIS techniques that could be useful in reducing the damage caused by water-related disasters while considering inter-Korean relations and the disasters that occur in North Korea. To this end, based on the definitions of disasters in South and North Korea, water-related disasters that occurred during a 17-year period from 2001 to 2017 in North Korea were first summarized and reclassified into six types: typhoons, downpours, floods, landslides, heavy snowfalls, and droughts. In addition, remote sensing- and GIS-based techniques in South Korea that could be applied to water-related disasters in North Korea were investigated and reclassified according to applicability to the six disaster types. The results showed that remote sensing and other monitoring techniques using spatial information, GIS-based database construction, and integrated water-related disaster management have high priorities. Especially, the use of radar images, such as C band images, has proven essential. Moreover, case studies were analyzed within remote sensing- and GIS-based techniques that could be applicable to the water-related disasters that occur frequently in North Korea. Water disaster satellites with high-resolution C band synthetic aperture radar are scheduled to be launched by South Korea. These results provide basic data to support techniques and establish countermeasures to reduce the damage from water-related disasters in North Korea in the medium to long term.


Author(s):  
P.K. Paul ◽  
P. S. Aithal ◽  
A. Bhuimali ◽  
K.S. Tiwary ◽  
R. Saavedra ◽  
...  

Geo Informatics is an interdisciplinary field responsible for spatial information related activities. Geo Informatics is close to the Geo Information Science, Geo Information System, Remote Sensing, etc. Geo Informatics is a combination of Geo Science and Information Science and here different kinds of IT and Computing tools are being used such as Database Technology, Network Technology, Web Technology, Multimedia Technology, etc in the spatial data management. Remote Sensing is considered as a component of Geo Information Science dedicated in gathering of information on the different types of objects without physical content and applicable in different areas of the geography, survey of land and different type of geo related areas viz. Hydrology, Ecology, Meteorology, Oceanography and Geology, etc. The term remote sensing is also called as GIS & RS due to their relationship and their importance. The applications of the IT in Geography and allied areas are called as Geo Informatics or Geo Information Science. Similarly, the applications and utilization of IT, Information Science and Computing in Environment and allied areas are known as Environmental Informatics or Environmental Information Science. The GIS and Remote Sensing applications in the environment and ecological areas are increasing rapidly and it includes various existing and emerging applications. This paper talks about the applications of the GIS and RS in Environmental Applications and Management.


Author(s):  
L. W. Fritz

Abstract. Professor Dr. Mult. Gottfried Konecny is a primary force for guiding and leading ISPRS affiliations, membership, and structure. Throughout the past 55 years he has shared his vast knowledge and experience with the entire ISPRS community making ISPRS the foremost voice for our profession of the Photogrammetry, Remote Sensing and Spatial Information sciences and technologies. This is a testimonial devoted to thank and honor him for his steadfast dedication to ISPRS and its Members. Through his capable leadership and diplomatic skills he has brought leading individuals and organizations from governmental agencies, national and international societies, academia and the private sector together to share and promote the common interests of our profession. As such he deserves to be honored as the Ambassador of our Profession.


2021 ◽  
Vol 10 (6) ◽  
pp. 3507-3518
Author(s):  
Khalifah Insan Nur Rahmi ◽  
Muhammad Dimyati

Agricultural drought is one of the hydrometeorological disasters that cause significant losses because it affects food stocks. In addition, agricultural droughts, impact the physical and socio-economic development of the community. Remote sensing technology is used to monitor agricultural droughts spatially and temporally for minimizing losses. This study reviewed the literatures related to remote sensing and GIS for monitoring drought vulnerability in Indonesia. The study was conducted on an island-scale on Java Island, a provincial-scale in East Java and Bali, and a district-scale in Indramayu and Kebumen. The dominant method was the drought index, which involves variable land surface temperature (LST), vegetation index, land cover, wetness index, and rainfall. Each study has a strong point and a weak point. Low-resolution satellite imagery has been used to assess drought vulnerability. At the island scale, it provides an overview of drought conditions, while at the provincial scale, it focuses on paddy fields and has little detailed information. In-situ measurements at the district scale detect meteorological drought accurately, but there were limitations in the mapping unit's detailed information. Drought mapping using GIS and remote sensing at the district scale has detailed spatial information on climate and physiographic aspects, but it needs temporal data monitoring.


2019 ◽  
Vol 9 (12) ◽  
pp. 2446 ◽  
Author(s):  
Hyung-Sup Jung ◽  
Saro Lee

As computer and space technologies have been developed, geoscience information systems (GIS) and remote sensing (RS) technologies, which deal with the geospatial information, have been maturing rapidly [...]


2016 ◽  
Vol 19 (1) ◽  
pp. 131-139
Author(s):  
Vinh Trong Bui ◽  
Hoang Minh Ly

In recent years, beach and shoreline erosion has occurred increasingly around the world. Because of climate change and human activities, many beaches and shorelines have been eroded severely in Vietnam, especially in Vung Tau City. In order to understand and explain the reasons why Vung Tau beaches have been eroded, the author applied the Geographic Information System (GIS) and Remote Sensing (RS) to analyze the movement of beach in the past and present. The results showed that Vung Tau city has witnessed a massive shoreline replacement including severe erosion and gradual accretionsince 1989. CuaLap river mouth features all-time biggest changes with more than 800 meter of retreating shoreline.


Sign in / Sign up

Export Citation Format

Share Document