scholarly journals A Study to Investigate the Viscosity Effect on Micro-Confined Fluids Flow in Tight Formations Considering Fluid–Solid Interaction

2021 ◽  
Vol 9 ◽  
Author(s):  
Mingqiang Chen ◽  
Qingping Li ◽  
Linsong Cheng ◽  
Xiukun Wang ◽  
Chaohui Lyu ◽  
...  

Understanding different fluids flow behavior confined in microscales has tremendous significance in the development of tight oil reservoirs. In this article, a novel semiempirical model for different confined fluid flow based on the concept of boundary layer thickness, caused by the fluid–solid interaction, is proposed. Micro-tube experiments are carried out to verify the novel model. After the validation, the viscosity effect on the flow rate and Poiseuille number considering the fluid–solid interaction is investigated. Furthermore, the novel model is incorporated into unstructured networks with anisotropy to study the viscosity effect on pore-scale flow in tight formations under the conditions of different displacement pressure gradients, different aspect ratios (ratio of the pore radius to the connecting throat radius), and different coordination numbers. Results show that the viscosity effect on the flow rate and Poiseuille number after considering the fluid–solid interaction induces a great deviation from that in conventional fluid flow. The absolute permeability is not only a parameter related to pore structures but also depends on fluid viscosity. The study provides an effective model for modeling different confined fluid flow in microscales and lays a good foundation for studying fluid flow in tight formations.

Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2197 ◽  
Author(s):  
Mingqiang Chen ◽  
Linsong Cheng ◽  
Renyi Cao ◽  
Chaohui Lyu

Due to micro-nanopores in tight formation, fluid-solid interaction effects on fluid flow in porous media cannot be ignored. In this paper, a novel model which can characterize micro-fluid flow in micro scales is proposed. This novel model has a more definite physical meaning compared with other empirical models. And it is validated by micro tube experiments. In addition, the application range of the model is rigorously analyzed from a mathematical view, which indicates a wider application scope. Based on the novel model, the velocity profile, the average flow velocity and flow resistance in consideration of fluid-solid interaction are obtained. Furthermore, the novel model is incorporated into a representative pore scale network model to study fluid-solid interactions on fluid flow in porous media. Results show that due to fluid-solid interaction in micro scales, the change rules of the velocity profile, the average flow velocity and flow resistance generate obvious deviations from traditional Hagen-Poiseuille’s law. The smaller the radius and the lower the displacement pressure gradient (∇P), the more obvious the deviations will be. Moreover, the apparent permeability in consideration of fluid-solid interaction is no longer a constant, it increases with the increase of ∇P and non-linear flow appears at low ∇P. This study lays a good foundation for studying fluid flow in tight formation.


2020 ◽  
Vol 17 (36) ◽  
pp. 634-645
Author(s):  
Izzat Niazi SULAIMAN ◽  
Yahya Jirjees TAWFEEQ

Practically all studies of reservoir engineering involve detailed knowledge of fluid flow characteristics. The fluid flow performance in porous media is affected by pressure, flow rate, and volume of single fluid phases. Permeability is a measure of how well a porous media allows the flow of fluids through it. Permeability and porosity form the two significant characteristics of reservoir rocks. This research aimed to present the design of laboratory equipment to test the ability of fluid flow through different sandstone samples. Two sand core samples (coarse sand sample and fine sand sample) were tested. The laboratory findings measurements of porosity, saturation, total permeability, effective permeability, and relative permeability were evaluated. The laboratory tests were performed on partially saturated, unconsolidated core sand for two-phase fluid flow. The experimental work was developed for measuring the flow capacity achieved under the steady-state conditions method. Various grain sizes sands were selected as a porous medium to determine petrophysical properties and fluid flow capacity of the rock sample. Nitrogen and air were utilized as gas-phases, and, for liquid-phases, water was chosen as an injection fluid. The steady-state process method was used to determine the permeability and relative permeability of unconsolidated sands to water flow. Different flow rates were measured for different pressure gradients in a viscose flow. As the flow rate increases, the pressure difference also increased. It can be observed that there are a direct correlation and relationship between the flow rate and the pressure difference. The core plug's absolute permeability was measured using Darcy Equation. Absolute permeability does not depend on fluid characteristics but only on media properties. The sample container contains a more significant amount of sand, decrease the permeability, and therefore requires high pressure for fluid flowing within the sample.


Author(s):  
T. J. John ◽  
B. Mathew ◽  
H. Hegab

The applications involving fluid flow through microchannels in industry and research have increased significantly with the evolution of microfluidic devices such as lab-on-chip systems. Most of the previous studies concerning fluid flow were done using circular microchannels. However, there is an increased usage of noncircular microchannels, especially square microchannels, in microfluidic devices. Thus there is need for experimental studies on the behavior of fluid flow in square microchannels, and the comparison of the results with the results obtained from the conventional fluid flow equations is relevant. In this study the authors are focusing on the analysis of the friction factor associated with square microchannels of rounded edges under laminar flow conditions. Microchannels with hydraulic diameters of 200, 300, 400 and 500 micrometers and length of 10 cm and 5 cm are used in the analysis. DI-water and ethylene glycol at room temperature is used as the liquid for experiments. A constant liquid flow rate is achieved in the channels using a syringe pump that can pump from 50 μl/hr to 7,500 ml/hr using a 60 ml syringe, and a high precision pressure gauge is used to measure the pressure drop across the channel. The Reynolds number of the liquid flow in all the channels is kept constant between 20 and 120 by varying the flow rate. The friction factor at each Reynolds number is calculated and the results are compared with the friction factor of conventional channels. Experiments are conducted to measure the pressure drop across the channels. The pressure drop obtained across the 5 cm channel is subtracted from the pressure drop obtained across the 10 cm channel so that the effect of entrance effect can be eliminated from the results. The fiction factor obtained from the experiments is used to calculate the Poiseuille number. The experimental values of Poiseuille number are showing a median deviation of around 9% from the conventional values for all the different channels. The uncertainty is observed to be ca.9% for all the channels at all values of Reynolds numbers. The major factor contributing towards the total uncertainty is the uncertainty in the measurement of liquid flow rate.


2019 ◽  
Vol 11 (1) ◽  
pp. 01025-1-01025-5 ◽  
Author(s):  
N. A. Borodulya ◽  
◽  
R. O. Rezaev ◽  
S. G. Chistyakov ◽  
E. I. Smirnova ◽  
...  

2018 ◽  
Vol 13 (3) ◽  
pp. 1-10 ◽  
Author(s):  
I.Sh. Nasibullayev ◽  
E.Sh Nasibullaeva ◽  
O.V. Darintsev

The flow of a liquid through a tube deformed by a piezoelectric cell under a harmonic law is studied in this paper. Linear deformations are compared for the Dirichlet and Neumann boundary conditions on the contact surface of the tube and piezoelectric element. The flow of fluid through a deformed channel for two flow regimes is investigated: in a tube with one closed end due to deformation of the tube; for a tube with two open ends due to deformation of the tube and the differential pressure applied to the channel. The flow rate of the liquid is calculated as a function of the frequency of the deformations, the pressure drop and the physical parameters of the liquid.


2018 ◽  
Vol 11 (1) ◽  
pp. 55-69 ◽  
Author(s):  
Giancarlo Chiatti ◽  
Ornella Chiavola ◽  
Fulvio Palmieri ◽  
Roberto Pompei

Background:The paper deals with a diesel common rail nozzle in which a novel orifice layout is implemented.Objective:Its influence on the nozzle mechanical-hydraulic behavior and on the spray shape transient development is experimentally investigated.Methods:In the research, a solenoid injector for light duty diesel engines is equipped with the novel nozzle prototype and tested. The prototype layout is described, pointing out the features of the nozzle orifices, in which a Slot cross-section is adopted; the investigation is accomplished extending the hydraulic tests and the spray visualizations to a reference nozzle with standard holes. The influence of the hole layout on the mechanical-hydraulic behavior of the nozzle is assessed by experimental analysis based on the rate of injection measurement, in comparison with the reference nozzle. Once the hydraulic behavior of the novel nozzle has been characterized in terms of mass flow rate, the slot influence on the spray shape is assessed analyzing the macroscopic features such as the penetration distance and the spray angle, in non evaporative conditions. The study is carried out under transient injection conditions, for different injection pressures, up to 1400 bar.Results:The results on spray characteristics also provide reference information to set up spray models suited to take the Slot orifice into account.


Author(s):  
Yi Shi ◽  
Jianjun Zhu ◽  
Haoyu Wang ◽  
Haiwen Zhu ◽  
Jiecheng Zhang ◽  
...  

Assembled in series with multistage, Electrical Submersible Pumps (ESP) are widely used in offshore petroleum production due to the high production rate and efficiency. The hydraulic performance of ESPs is subjected to the fluid viscosity. High oil viscosity leads to the degradation of ESP boosting pressure compared to the catalog curves under water flow. In this paper, the influence of fluid viscosity on the performance of a 14-stage radial-type ESP under varying operational conditions, e.g. rotational speeds 1800–3500 r/min, viscosities 25–520 cP, was investigated. Numerical simulations were conducted on the same ESP model using a commercial Computational Fluid Dynamics (CFD) software. The simulated average pump head is comparable to the corresponding experimental data under different viscosities and rotational speeds with less than ±20% prediction error. A mechanistic model accounting for the viscosity effect on ESP boosting pressure is proposed based on the Euler head in a centrifugal pump. A conceptual best-match flowrate QBM is introduced, at which the impeller outlet flow direction matches the designed flow direction. The recirculation losses caused by the mismatch of velocity triangles and other head losses resulted from the flow direction change, friction loss and leakage flow etc., are included in the model. The comparison of model predicted pump head versus experimental measurements under viscous fluid flow conditions demonstrates good agreement. The overall prediction error is less than ±10%.


2021 ◽  
Vol 40 (5) ◽  
pp. 10043-10061
Author(s):  
Xiaoping Shi ◽  
Shiqi Zou ◽  
Shenmin Song ◽  
Rui Guo

 The asset-based weapon target assignment (ABWTA) problem is one of the important branches of the weapon target assignment (WTA) problem. Due to the current large-scale battlefield environment, the ABWTA problem is a multi-objective optimization problem (MOP) with strong constraints, large-scale and sparse properties. The novel model of the ABWTA problem with the operation error parameter is established. An evolutionary algorithm for large-scale sparse problems (SparseEA) is introduced as the main framework for solving large-scale sparse ABWTA problem. The proposed framework (SparseEA-ABWTA) mainly addresses the issue that problem-specific initialization method and genetic operators with a reward strategy can generate solutions efficiently considering the sparsity of variables and an improved non-dominated solution selection method is presented to handle the constraints. Under the premise of constructing large-scale cases by the specific case generator, two numerical experiments on four outstanding multi-objective evolutionary algorithms (MOEAs) show Runtime of SparseEA-ABWTA is faster nearly 50% than others under the same convergence and the gap between MOEAs improved by the mechanism of SparseEA-ABWTA and SparseEA-ABWTA is reduced to nearly 20% in the convergence and distribution.


2011 ◽  
Vol 189-193 ◽  
pp. 2285-2288
Author(s):  
Wen Hua Jia ◽  
Chen Bo Yin ◽  
Guo Jin Jiang

Flow features, specially, flow rate, discharge coefficient and efflux angle under different operating conditions are numerically simulated, and the effects of shapes and the number of notches on them are analyzed. To simulate flow features, 3D models are developed as commercially available fluid flow models. Most construction machineries in different conditions require different actions. Thus, in order to be capable of different actions and exhibit good dynamic behavior, flow features should be achieved in designing an optimized proportional directional spool valve.


Sign in / Sign up

Export Citation Format

Share Document