scholarly journals Performance Analysis of Different Embedded Systems and Open-Source Optimization Packages Towards an Impulsive MPC Artificial Pancreas

2021 ◽  
Vol 12 ◽  
Author(s):  
Jhon E. Goez-Mora ◽  
María F. Villa-Tamayo ◽  
Monica Vallejo ◽  
Pablo S. Rivadeneira

Current technological advances have brought closer to reality the project of a safe, portable, and efficient artificial pancreas for people with type 1 diabetes (T1D). Among the developed control strategies for T1D, model predictive control (MPC) has been emphasized in literature as a promising control for glucose regulation. However, these control strategies are commonly designed in a computer environment, regardless of the limitations of a portable device. In this paper, the performances of six embedded platforms and three open-source optimization solver algorithms are assessed for T1D treatment. Their advantages and limitations are clarified using four MPC formulations of increasing complexity and a hardware-in-the-loop methodology to evaluate glucose control in virtual adult subjects. The performance comparison includes the execution time, the difference concerning the evolution obtained in MATLAB, the processor temperature, energy consumption, time percentage in normoglycemia, and the number of hypo- and hyperglycemic events. Results show that Quadprog is the package that faithfully follows the results obtained with control strategies designed and tuned on a computer with the MATLAB software. In addition, the Raspberry Pi 3 and the Tinker Board S embedded systems present the appropriate characteristics to be implemented as portable devices in the artificial pancreas application according to the criteria set out in this work.

1987 ◽  
Vol 109 (3) ◽  
pp. 185-191 ◽  
Author(s):  
P. D. Lund

Comprehensive numerical computer simulations have been performed to investigate the effects of various storage control strategies on the thermal performance of a non-heat pump Central Solar Heating Plant with Seasonal Storage (CSHPSS) employing a constructed water volume. Different distribution temperatures, load, collector, and storage sizes were also considered in the analyses. The study indicates that the difference in the yearly solar fraction between a system with a simplified storage control strategy and an optimal, but technically more sophisticated one, would be of the order of 0.05–0.15 units (solar fraction, or, equivalently nonauxiliary fraction units). The worst control showed a performance reduction of 0.1–0.35 units compared to the optimal case, the lower value representing system configurations with adequate storage capacity.


2019 ◽  
Vol 52 (1) ◽  
pp. 275-280
Author(s):  
Luisa Fernanda Quesada ◽  
José David Rojas ◽  
Orlando Arrieta ◽  
Ramon Vilanova

Author(s):  
Harsha S. Shanthaveeraiah ◽  
R. Balasubramani

Recently, Android is being integrated and applied to various embedded systems because of good characteristics like open source, a wide connective range, multitasking, and secure communications. Most of the modern embedded designers have been focused on system performance while reducing operating power consumption. However, increasing the performance level inevitably increases power consumption. In this article, an optimal power management (OPM) system is proposed for embedded systems using a novel scheduling algorithm. It can control the operating power consumption of open source platforms (Raspberry-PI, Parallella, and Arduino) supported hardware devices (ZynqBerry, ZynqParallela, and ArduZynq). The proposed OPM system uses the scheduling algorithm based on the functionality of optimization and their tasks. Moreover, the proposed OPM system provides the low or high frequency to the devices upon receiving the low frequency and high frequency request from the devices. The simulation result is calculated in terms power consumption, maximum operating frequency and hardware utilization.


Micromachines ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 403 ◽  
Author(s):  
Trieu Nguyen ◽  
Sune Zoëga Andreasen ◽  
Anders Wolff ◽  
Dang Duong Bang

Microcontrollers are programmable, integrated circuit chips. In the last two decades, their applications to industrial instruments, vehicles, and household appliances have reached the extent that microcontrollers are now the number-one selling electronic chip of all kinds. Simultaneously, the field of lab-on-a-chip research and technology has seen major technological leaps towards sample handling, sample preparation, and sensing for use in molecular diagnostic devices. Yet, the transformation from a laboratory based lab-on-a-chip technology to actual point-of-care device products has largely been limited to a fraction of the foreseen potential. We believe that increased knowledge of the vast possibilities that becomes available with open source microcontrollers, especially when embedded in easy-to-use development environments, such as the Arduino or Raspberry Pi, could potentially solve and even bridge the gap between lab-on-a-chip technology and real-life point of care applications. The profuse availability and extraordinary capabilities of microcontrollers, namely within computation, communication, and networking, combined with easy-to-use development environments, as well as a very active and fast moving community of makers, who are eager to share their knowledge, could potentially be the difference between a dreadful “chip-in-a-lab”-situation, and the next successful start-up. Here follows a brief insight into how open source microcontrollers could potentially have a transformative effect on the field of lab-on-a-chip research and technology. Details in some specific areas of application are briefly treated before addressing challenges and future perspectives.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Soma Tomihara ◽  
Yoshitaka Oka ◽  
Shinji Kanda

AbstractBehavioral analysis plays an important role in wide variety of biological studies, but behavioral recordings often tend to be laborious and are associated with inevitable human-errors. It also takes much time to perform manual behavioral analyses while replaying the videos. On the other hand, presently available automated recording/analysis systems are often specialized for certain types of behavior of specific animals. Here, we established an open-source behavioral recording system using Raspberry Pi, which automatically performs video-recording and systematic file-sorting, and the behavioral recording can be performed more efficiently, without unintentional human operational errors. We also developed an Excel macro that enables us to easily perform behavioral annotation with simple manipulation. Thus, we succeeded in developing an analysis suite that mitigates human tasks and thus reduces human errors. By using this suite, we analyzed the sexual behavior of a laboratory and a wild medaka strain and found a difference in sexual motivation presumably resulting from domestication.


Author(s):  
A. Ferrerón Labari ◽  
D. Suárez Gracia ◽  
V. Viñals Yúfera

In the last years, embedded systems have evolved so that they offer capabilities we could only find before in high performance systems. Portable devices already have multiprocessors on-chip (such as PowerPC 476FP or ARM Cortex A9 MP), usually multi-threaded, and a powerful multi-level cache memory hierarchy on-chip. As most of these systems are battery-powered, the power consumption becomes a critical issue. Achieving high performance and low power consumption is a high complexity challenge where some proposals have been already made. Suarez et al. proposed a new cache hierarchy on-chip, the LP-NUCA (Low Power NUCA), which is able to reduce the access latency taking advantage of NUCA (Non-Uniform Cache Architectures) properties. The key points are decoupling the functionality, and utilizing three specialized networks on-chip. This structure has been proved to be efficient for data hierarchies, achieving a good performance and reducing the energy consumption. On the other hand, instruction caches have different requirements and characteristics than data caches, contradicting the low-power embedded systems requirements, especially in SMT (simultaneous multi-threading) environments. We want to study the benefits of utilizing small tiled caches for the instruction hierarchy, so we propose a new design, ID-LP-NUCAs. Thus, we need to re-evaluate completely our previous design in terms of structure design, interconnection networks (including topologies, flow control and routing), content management (with special interest in hardware/software content allocation policies), and structure sharing. In CMP environments (chip multiprocessors) with parallel workloads, coherence plays an important role, and must be taken into consideration.


Author(s):  
Faried Effendy ◽  
Taufik ◽  
Bramantyo Adhilaksono

: Substantial research has been conducted to compare web servers or to compare databases, but very limited research combines the two. Node.js and Golang (Go) are popular platforms for both web and mobile application back-ends, whereas MySQL and Go are among the best open source databases with different characters. Using MySQL and MongoDB as databases, this study aims to compare the performance of Go and Node.js as web applications back-end regarding response time, CPU utilization, and memory usage. To simulate the actual web server workload, the flow of data traffic on the server follows the Poisson distribution. The result shows that the combination of Go and MySQL is superior in CPU utilization and memory usage, while the Node.js and MySQL combination is superior in response time.


2021 ◽  
Vol 256 ◽  
pp. 19-43
Author(s):  
Jennifer L. Castle ◽  
Jurgen A. Doornik ◽  
David F. Hendry

The Covid-19 pandemic has put forecasting under the spotlight, pitting epidemiological models against extrapolative time-series devices. We have been producing real-time short-term forecasts of confirmed cases and deaths using robust statistical models since 20 March 2020. The forecasts are adaptive to abrupt structural change, a major feature of the pandemic data due to data measurement errors, definitional and testing changes, policy interventions, technological advances and rapidly changing trends. The pandemic has also led to abrupt structural change in macroeconomic outcomes. Using the same methods, we forecast aggregate UK unemployment over the pandemic. The forecasts rapidly adapt to the employment policies implemented when the UK entered the first lockdown. The difference between our statistical and theory based forecasts provides a measure of the effect of furlough policies on stabilising unemployment, establishing useful scenarios had furlough policies not been implemented.


2021 ◽  
Vol 13 (15) ◽  
pp. 8182
Author(s):  
José María Portalo ◽  
Isaías González ◽  
Antonio José Calderón

Smart grids and smart microgrids (SMGs) require proper monitoring for their operation. To this end, measuring, data acquisition, and storage, as well as remote online visualization of real-time information, must be performed using suitable equipment. An experimental SMG is being deployed that combines photovoltaics and the energy carrier hydrogen through the interconnection of photovoltaic panels, electrolyser, fuel cell, and load around a voltage bus powered by a lithium battery. This paper presents a monitoring system based on open-source hardware and software for tracking the temperature of the photovoltaic generator in such an SMG. In fact, the increases in temperature in PV modules lead to a decrease in their efficiency, so this parameter needs to be measured in order to monitor and evaluate the operation. Specifically, the developed monitoring system consists of a network of digital temperature sensors connected to an Arduino microcontroller, which feeds the acquired data to a Raspberry Pi microcomputer. The latter is accessed by a cloud-enabled user/operator interface implemented in Grafana. The monitoring system is expounded and experimental results are reported to validate the proposal.


Sign in / Sign up

Export Citation Format

Share Document