scholarly journals Cross Talk Between Macrophages and Cancer Cells in the Bone Metastatic Environment

2021 ◽  
Vol 12 ◽  
Author(s):  
Lena Batoon ◽  
Laurie K. McCauley

The skeleton is a common site for cancer metastases with the bone microenvironment providing the appropriate conditions for cancer cell colonization. Once in bone, cancer cells effectively manipulate their microenvironment to support their growth and survival. Despite previous efforts to improve treatment modalities, skeletal metastases remain with poor prognoses. This warrants an improved understanding of the mechanisms leading to bone metastasis that will aid development of effective treatments. Macrophages in the tumor microenvironment are termed tumor associated macrophages (TAMs) and their crosstalk with cancer cells is critical in regulating tumorigenicity in multiple cancers. In bone metastases, this crosstalk is also being increasingly implicated but the specific signaling pathways remain incompletely understood. Here, we summarize the reported functions, interactions, and signaling of macrophages with cancer cells during the metastatic cascade to bone. Specifically, we review and discuss how these specific interactions impact macrophages and their profiles to promote tumor development. We also discuss the potential of targeting this crosstalk to inhibit disease progression. Finally, we identify the remaining knowledge gaps that will need to be addressed in order to fully consider therapeutic targeting to improve clinical outcomes in cancer patients.

Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3455
Author(s):  
Blanca Ortiz-Quintero

MicroRNAs (miRNAs) are released by different types of cells through highly regulated mechanisms under normal and pathological conditions. These extracellular miRNAs can be delivered into recipient cells for functional purposes, acting as cell-to-cell signaling mediators. It has been discovered that cancer cells release miRNAs into their surroundings, targeting normal cells or other cancer cells, presumably to promote tumor development and progression. These extracellular miRNAs are associated with oncogenic mechanisms and, because they can be quantified in blood and other bodily fluids, may be suitable noninvasive biomarkers for cancer detection. This review summarizes recent evidence of the role of extracellular miRNAs as intercellular mediators, with an emphasis on their role in the mechanisms of tumor development and progression and their potential value as biomarkers in solid tumors. It also highlights the biological characteristics of extracellular miRNAs that enable them to function as regulators of gene expression, such as biogenesis, gene silencing mechanisms, subcellular compartmentalization, and the functions and mechanisms of release.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Donna M. Sosnoski ◽  
Venkatesh Krishnan ◽  
William J. Kraemer ◽  
Courtenay Dunn-Lewis ◽  
Andrea M. Mastro

It is commonly accepted that cancer cells interact with host cells to create a microenvironment favoring malignant colonization. The complex bone microenvironment produces an ever changing array of cytokines and growth factors. In this study, we examined levels of MCP-1, IL-6, KC, MIP-2, VEGF, MIG, and eotaxin in femurs of athymic nude mice inoculated via intracardiac injection with MDA-MB-231GFPhuman metastatic breast cancer cells, MDA-MB-231BRMS1GFP, a metastasis suppressed variant, or PBS. Animals were euthanized (day 3, 11, 19, 27 after injection) to examine femoral cytokine levels at various stages of cancer cell colonization. The epiphysis contained significantly more cytokines than the diaphysis except for MIG which was similar throughout the bone. Variation among femurs was evident within all groups. By day 27, MCP-1, MIG, VEGF and eotaxin levels were significantly greater in femurs of cancer cell-inoculated mice. These pro-osteoclastic and angiogenic cytokines may manipulate the bone microenvironment to enhance cancer cell colonization.


2007 ◽  
Vol 35 (4) ◽  
pp. 701-703 ◽  
Author(s):  
I. Podgorski ◽  
B.E. Linebaugh ◽  
B.F. Sloane

The skeleton is the most common site of metastasis in patients with advanced prostate cancer. Despite many advances in targeting skeletal metastases, the mechanisms behind the attraction of prostate cancer cells to the bone are not known. Osteoclast cathepsin K, due to its ability to effectively degrade bone matrix collagen I, has been implicated in colonization and growth of prostate tumours in the bone. Identification of new cathepsin K substrates in the bone microenvironment and the recent findings demonstrating its involvement in obesity and inflammation suggest additional roles for this enzyme in skeletal metastases of prostate cancer.


Author(s):  
Gregory A. Clines ◽  
Theresa A. Guise

The metastasis of cancer cells to bone alters bone architecture and mineral homeostasis. As described by the ‘seed and soil’ hypothesis, bone represents a fertile ground for cancer cells to flourish. A ‘vicious cycle’ of reciprocal bone–cancer cellular signals occurs with osteolytic (bone-resorbing) metastases, and a similar mechanism likely modulates osteoblastic (bone-forming) metastatic lesions as well. The development of targeted therapies either to block initial cancer cell chemotaxis, invasion and adhesion or to break the ‘vicious cycle’ is dependent on a more complete understanding of bone metastases. Although bisphosphonates delay progression of skeletal metastases, it is clear that more-effective therapies are needed. Cancer-associated bone morbidity remains a major public health problem, and to improve therapy and prevention it is important to understand the pathophysiology of the effects of cancer on bone. This review details scientific advances in this area.


2020 ◽  
Vol 20 (2) ◽  
pp. 130-145 ◽  
Author(s):  
Keywan Mortezaee ◽  
Masoud Najafi ◽  
Bagher Farhood ◽  
Amirhossein Ahmadi ◽  
Dheyauldeen Shabeeb ◽  
...  

Cancer is one of the most complicated diseases in present-day medical science. Yearly, several studies suggest various strategies for preventing carcinogenesis. Furthermore, experiments for the treatment of cancer with low side effects are ongoing. Chemotherapy, targeted therapy, radiotherapy and immunotherapy are the most common non-invasive strategies for cancer treatment. One of the most challenging issues encountered with these modalities is low effectiveness, as well as normal tissue toxicity for chemo-radiation therapy. The use of some agents as adjuvants has been suggested to improve tumor responses and also alleviate normal tissue toxicity. Resveratrol, a natural flavonoid, has attracted a lot of attention for the management of both tumor and normal tissue responses to various modalities of cancer therapy. As an antioxidant and anti-inflammatory agent, in vitro and in vivo studies show that it is able to mitigate chemo-radiation toxicity in normal tissues. However, clinical studies to confirm the usage of resveratrol as a chemo-radioprotector are lacking. In addition, it can sensitize various types of cancer cells to both chemotherapy drugs and radiation. In recent years, some clinical studies suggested that resveratrol may have an effect on inducing cancer cell killing. Yet, clinical translation of resveratrol has not yielded desirable results for the combination of resveratrol with radiotherapy, targeted therapy or immunotherapy. In this paper, we review the potential role of resveratrol for preserving normal tissues and sensitization of cancer cells in combination with different cancer treatment modalities.


2021 ◽  
Vol 22 (13) ◽  
pp. 6865
Author(s):  
Kirstine Sandal Nørregaard ◽  
Henrik Jessen Jürgensen ◽  
Henrik Gårdsvoll ◽  
Lars Henning Engelholm ◽  
Niels Behrendt ◽  
...  

Cancer-induced bone degradation is part of the pathological process associated with both primary bone cancers, such as osteosarcoma, and bone metastases originating from, e.g., breast, prostate, and colon carcinomas. Typically, this includes a cancer-dependent hijacking of processes also occurring during physiological bone remodeling, including osteoclast-mediated disruption of the inorganic bone component and collagenolysis. Extensive research has revealed the significance of osteoclast-mediated bone resorption throughout the course of disease for both primary and secondary bone cancer. Nevertheless, cancer cells representing both primary bone cancer and bone metastasis have also been implicated directly in bone degradation. We will present and discuss observations on the contribution of osteoclasts and cancer cells in cancer-associated bone degradation and reciprocal modulatory actions between these cells. The focus of this review is osteosarcoma, but we will also include relevant observations from studies of bone metastasis. Additionally, we propose a model for cancer-associated bone degradation that involves a collaboration between osteoclasts and cancer cells and in which both cell types may directly participate in the degradation process.


2021 ◽  
Vol 22 (11) ◽  
pp. 5930
Author(s):  
Catharina Melzer ◽  
Juliane von der Ohe ◽  
Tianjiao Luo ◽  
Ralf Hass

Direct cellular interactions of MDA-MB-231cherry breast cancer cells with GFP-transduced human mesenchymal stroma/stem-like cells (MSCGFP) in a co-culture model resulted in spontaneous cell fusion by the generation of MDA-MSC-hyb5cherry GFP breast cancer hybrid cells. The proliferative capacity of MDA-MSC-hyb5 cells was enhanced about 1.8-fold when compared to the parental MDA-MB-231cherry breast cancer cells. In contrast to a spontaneous MDA-MB-231cherry induced tumor development in vivo within 18.8 days, the MDA-MSC-hyb5 cells initially remained quiescent in a dormancy-like state. At distinct time points after injection, NODscid mice started to develop MDA-MSC-hyb5 cell-induced tumors up to about a half year later. Following tumor initiation, however, tumor growth and formation of metastases in various different organs occurred rapidly within about 10.5 days. Changes in gene expression levels were evaluated by RNA-microarray analysis and revealed certain increase in dormancy-associated transcripts in MDA-MSC-hyb5. Chemotherapeutic responsiveness of MDA-MSC-hyb5 cells was partially enhanced when compared to MDA-MB-231 cells. However, some resistance, e.g., for taxol was detectable in cancer hybrid cells. Moreover, drug response partially changed during the tumor development of MDA-MSC-hyb5 cells; this suggests the presence of unstable in vivo phenotypes of MDA-hyb5 cells with increased tumor heterogeneity.


Sign in / Sign up

Export Citation Format

Share Document