scholarly journals Design and Performance of an Innovative Hybrid Constructed Wetland for Sustainable Pig Slurry Treatment in Small Farms

2021 ◽  
Vol 8 ◽  
Author(s):  
Antonina Torrens ◽  
Montserrat Folch ◽  
Miquel Salgot

Simple and suitable treatment of swine slurry from small farms is paramount especially in sensitive areas. This paper evaluates the viability of an innovative nature-based technology hybrid system (a Vertical Flow Constructed Wetland followed by a Horizontal Flow Constructed Wetland both planted with reeds – Phragmites australis) to treat swine slurry for further land application or discharge in water bodies with reduced nitrogen impact. Physicochemical parameters, bacterial indicators, surface deposits and biomass inside the filters were monitored. The hybrid configuration offered a dual function for simultaneous solid-liquid separation and biological treatment. Removal of organic matter and suspended solids was very high (>80% for SS and >75% for COD and BOD5) while the overall nitrogen load removal was 65%, due to the combined nitrification/denitrification processes, thus effectively reducing swine slurry nitrogen content. The influence of temperature and design and operational parameters on the treatment efficiency and the hydraulic behavior were also studied. The vertical constructed wetland achieved good hydraulic performance with no clogging problems, despite high pollutant loads. Some of the pollutants were retained and mineralized in the surface deposit layer, increasing around 20 cm each year. This organic biosolid layer improved filtration efficiency. The high ammonia contents interfered with the growth of Phragmites australis, while the high concentration of suspended solids and organic matter determine the operation and design to be implemented.

2005 ◽  
Vol 51 (1) ◽  
pp. 113-120 ◽  
Author(s):  
P. Navarro ◽  
J. Sarasa ◽  
D. Sierra ◽  
S. Esteban ◽  
J.L. Ovelleiro

Wine industry wastewaters contain a high concentration of organic biodegradable compounds as well as a great amount of suspended solids. These waters are difficult to treat by conventional biological processes because they are seasonal and a great flow variation exists. Photocatalytic advanced oxidation is a promising technology for waters containing high amounts of organic matter. In this study we firstly investigated the application of H2O2 as oxidant combined with light (artificial or natural) in order to reduce the organic matter in samples from wine industry effluents. Secondly, we studied its combination with heterogeneous catalysts: titanium dioxide and clays containing iron minerals. The addition of photocatalysts to the system reduces the required H2O2 concentration. Although the H2O2/TiO2 system produces higher efficiencies, the H2O2/clays system requires a H2O2 dosage between three and six times lower.


2019 ◽  
pp. 151-161
Author(s):  
H. Obarska-Pempkowiak ◽  
M. Gajewska ◽  
P. Kowalik

Efficiency of removal of contaminants in individual and local constructed wetland systemsoperating in 1995-2000 in Poland was analysed. Individual plants were composed of filterbeds of horizontal subsurface flow planted with willow (Salix viminalis) or reed (Phragmitesaustra/is).The local systems were hybrid constructed wetland systems consisting of horizontal andvertical flow filters. All systems were fed with septic tank effluent.Removal of organic matter and suspended solids was found to be very efficient. However theremoval of nitrogen (especially ammonia nitrogen) in one stage systems was insufficient. Itwas proved that hybrid systems ensure higher efficiencies of nitrogen removal than horizontalflow systems.


2011 ◽  
Vol 63 (10) ◽  
pp. 2360-2366 ◽  
Author(s):  
S. Ç. Ayaz ◽  
N. Findik ◽  
L. Akça ◽  
N. Erdoğan ◽  
C. Kınacı

This research project aimed to determine the technologically feasible and applicable wastewater treatment systems which will be constructed to solve environmental problems caused by small communities in Turkey. Pilot-scale treatment of a small community's wastewater was performed over a period of more than 2 years in order to show applicability of these systems. The present study involves removal of organic matter and suspended solids in serially operated horizontal (HFCW) and vertical (VFCW) sub-surface flow constructed wetlands. The pilot-scale wetland was constructed downstream of anaerobic reactors at the campus of TUBITAK-MRC. Anaerobically pretreated wastewater was introduced into this hybrid two-stage sub-surface flow wetland system (TSCW). Wastewater was first introduced into the horizontal sub-surface flow system and then the vertical flow system before being discharged. Recirculation of the effluent was tested in the system. When the recirculation ratio was 100%, average removal efficiencies for TSCW were 91 ± 4% for COD, 83 ± 10% for BOD and 96 ± 3% for suspended solids with average effluent concentrations of 9 ± 5 mg/L COD, 6 ± 3 mg/L BOD and 1 mg/L for suspended solids. Comparing non-recirculation and recirculation periods, the lowest effluent concentrations were obtained with a 100% recirculation ratio. The effluent concentrations met the Turkish regulations for discharge limits of COD, BOD and TSS in each case. The study showed that a hybrid constructed wetland system with recirculation is a very effective method of obtaining very low effluent organic matter and suspended solids concentrations downstream of anaerobic pretreatment of domestic wastewaters in small communities.


2000 ◽  
Vol 42 (3-4) ◽  
pp. 309-313 ◽  
Author(s):  
O. Tünay ◽  
I. Kabdasli ◽  
D. Orhon

Metal finishing plants, although the wastewaters and treatment schemes for this category are well defined, require a case by case evaluation to find appropriate solutions and to solve specific problems. In this paper, a case study conducted on a welding electrode plant is presented. The wastewater sources were surface cleaning, copper plating and soap solutions used for drawing which were frequently included in waters. The plant was subjected to pretreatment standards, which necessitated the control of sulfate and organic matter in addition to standard parameters of metals, oil, suspended solids etc. Following a source-based characterization, treatability studies were conducted to treat high concentration of sulfate, organic matter as well as heavy metals and oil-grease. The proposed treatment scheme involved separate treatment of copper bath for recovery, chemical oxidation for soap solutions, sulfate precipitation for sulfuric acid bath and application of hydroxide precipitation to proper combination of other wastewater sources.


1994 ◽  
Vol 30 (11) ◽  
pp. 25-33 ◽  
Author(s):  
Yoshimasa Watanabe ◽  
Satoshi Okabe ◽  
Tomochika Arata ◽  
Yuji Haruta

A comprehensive wastewater treatment system that accomplishes oxidation of organic matter, nitrification, and denitrification was developed, and its characteristics and performance were investigated. A municipal wastewater was treated by an up-flow aerated biofilter (UAB), in which biofilms were developed on stainless meshes installed horizontally. This UAB exhibited a great potential ability of oxidation of organic matter, SS stabilization, and nitrification due to a unique aeration mechanism giving high DO concentrations with relatively low aeration rates. Another unique feature of the UAB was that attached biofilms on stainless meshes physically filtered out and/or adsorbed suspended solids in the wastewater in addition to the biological oxidation of organic matter. A stable nitrification could be achieved at HRT=10 hours corresponding to a hydraulic loading of 86 L m−2 d−1 and at a ratio of aeration rate to wastewater flow rate (A/W) of 2, which is considerably low as compared to aeration rates of typical activated sludge systems. This UAB system also could handle relatively high hydraulic loading rates. The UAB used in this study still have enough space to install more stainless meshes so as to reduce hydraulic loading rates resulting in the reduction of HRT and aeration rate, which leads to improvement of the system performance as well as reduction of the running cost.


Sign in / Sign up

Export Citation Format

Share Document