scholarly journals Bothersome Flies: How Free-Ranging Horses Reduce Harm While Maintaining Nutrition

2021 ◽  
Vol 9 ◽  
Author(s):  
Daniel I. Rubenstein ◽  
Lisa H. Feinstein

The horses of Shackleford Banks, NC, United States are harassed by many species of biting flies. Apart from being a nuisance, their bites can lead to blood loss and transmit disease. As a result, these horses tend to avoid areas where fly abundances are high. Like other free-ranging horse populations, environmental factors such as low wind speeds and high temperatures increase fly loads per horse. Similarly, coat color matters since darker horses attract more flies than lighter ones, especially on hot sunny days. Many horse populations reduce per capita fly loads by living in large groups or by bunching tightly together. Shackleford horses do so, too, but also use wind speed differences among habitats to modulate fly numbers. By adopting a systematic pattern of moving between habitats such that they only visit a habitat when wind speed is high enough to keep fly harassment to a tolerable level, they can avoid being bitten while continuing to forage. Typically, they begin the day foraging on the salt marshes where fly abundance is inherently low and are lowered further by faint early morning breezes. Later in the morning, horses move to grassy patches (swales) when increasing wind speed reduces fly landings there to levels found on the marshes. Later still, when wind speeds peak, horses begin foraging among the sand dunes. At this point wind speeds are high enough so that horses using any habitat will be minimally harassed by flies, thus enabling them to freely choose where to feed based on which habitat meets particular dietary needs for protein, energy and nutrients on any particular day. Hence, Shackleford horses follow the breeze to solve a challenging dilemma of maintaining a high nutritional plane without succumbing to fly harassment. Other free-ranging horses populations appear to have a more limited “either-or” choice of “bite or be bitten,” thus limiting their decision-making options.

2017 ◽  
Vol 32 (6) ◽  
pp. 2217-2227 ◽  
Author(s):  
Siri Sofie Eide ◽  
John Bjørnar Bremnes ◽  
Ingelin Steinsland

Abstract In this paper, probabilistic wind speed forecasts are constructed based on ensemble numerical weather prediction (NWP) forecasts for both wind speed and wind direction. Including other NWP variables in addition to the one subject to forecasting is common for statistical calibration of deterministic forecasts. However, this practice is rarely seen for ensemble forecasts, probably because of a lack of methods. A Bayesian modeling approach (BMA) is adopted, and a flexible model class based on splines is introduced for the mean model. The spline model allows both wind speed and wind direction to be included nonlinearly. The proposed methodology is tested for forecasting hourly maximum 10-min wind speeds based on ensemble forecasts from the European Centre for Medium-Range Weather Forecasts at 204 locations in Norway for lead times from +12 to +108 h. An improvement in the continuous ranked probability score is seen for approximately 85% of the locations using the proposed method compared to standard BMA based on only wind speed forecasts. For moderate-to-strong wind the improvement is substantial, while for low wind speeds there is generally less or no improvement. On average, the improvement is 5%. The proposed methodology can be extended to include more NWP variables in the calibration and can also be applied to other variables.


2015 ◽  
Vol 2 (1) ◽  
pp. 25-36
Author(s):  
Otieno Fredrick Onyango ◽  
Sibomana Gaston ◽  
Elie Kabende ◽  
Felix Nkunda ◽  
Jared Hera Ndeda

Wind speed and wind direction are the most important characteristics for assessing wind energy potential of a location using suitable probability density functions. In this investigation, a hybrid-Weibull probability density function was used to analyze data from Kigali, Gisenyi, and Kamembe stations. Kigali is located in the Eastern side of Rwanda while Gisenyi and Kamembe are to the West. On-site hourly wind speed and wind direction data for the year 2007 were analyzed using Matlab programmes. The annual mean wind speed for Kigali, Gisenyi, and Kamembe sites were determined as 2.36m/s, 2.95m/s and 2.97m/s respectively, while corresponding dominant wind directions for the stations were ,  and  respectively. The annual wind power density of Kigali was found to be  while the power densities for Gisenyi and Kamembe were determined as and . It is clear, the investigated regions are dominated by low wind speeds thus are suitable for small-scale wind power generation especially at Kamembe site.


2019 ◽  
Vol 1 (1) ◽  
pp. 185-204 ◽  
Author(s):  
Palanisamy Mohan Kumar ◽  
Krishnamoorthi Sivalingam ◽  
Teik-Cheng Lim ◽  
Seeram Ramakrishna ◽  
He Wei

Small wind turbines are key devices for micro generation in particular, with a notable contribution to the global wind energy sector. Darrieus turbines, despite being highly efficient among various types of vertical axis turbines, received much less attention due to their starting characteristics and poor performance in low wind speeds. Radically different concepts are proposed as a potential solution to enhance the performance of Darrieus turbine in the weak wind flows, all along the course of Darrieus turbine development. This paper presents a comprehensive review of proposed concepts with the focus set on the low wind speed performance and critically assessing their applicability based on economics, reliability, complexity, and commercialization aspects. The study is first of its kind to consolidate and compare various approaches studied on the Darrieus turbine with the objective of increasing performance at low wind. Most of the evaluated solutions demonstrate better performance only in the limited tip speed ratio, though they improve the low wind speed performance. Several recommendations have been developed based on the evaluated concepts, and we concluded that further critical research is required for a viable solution in making the Darrieus turbine a low speed device.


2020 ◽  
Vol 164 ◽  
pp. 01006
Author(s):  
Ruslan Khrestenko ◽  
Ekaterina Sokolova ◽  
Dmitrii Okulovsky ◽  
Valeri Azarov

It is noted that the urban environment is polluted by oil products; in particular, there is a large pollution of atmospheric air. It is indicated that one of the pollution sources is the “small” spills, which are characteristic of urban areas. Experimental studies have been carried out on the gasoline distribution in atmospheric air at “small” spills. A single experiment at a low wind speed is considered. Data were obtained on the dependence of gasoline concentration in atmospheric air on the distance from the spill, the height above the level of the spill and the time of the spill. The component composition was studied using chromatographic studies. It is indicated that the distribution of gasoline vapors in the atmosphere is influenced by the ambient temperature, wind speed, surface area of the spill, time from the moment of spilling and the distance above the level of the spill. The gasoline dispersion in atmospheric air was calculated with the software using experimental and calculated data on the surface area of the spill. It is indicated that at low wind speeds (up to 0.5 m/s) from “small” spills of gasoline (up to 3 liters), significant excesses of standards for the content of harmful substances in the atmospheric air can be observed. It was determined that during spilling there is an excess of maximum permissible concentrations of single, hazardous substances such as ethyl benzene, m-xylene and amyl alcohol in the air.


2005 ◽  
Vol 62 (4) ◽  
pp. 1072-1092 ◽  
Author(s):  
Charles K. Gatebe ◽  
Michael D. King ◽  
Alexei I. Lyapustin ◽  
G. Thomas Arnold ◽  
Jens Redemann

Abstract The Cloud Absorption Radiometer (CAR) was flown aboard the University of Washington Convair 580 (CV-580) research aircraft during the Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) field campaign and obtained measurements of bidirectional reflectance distribution function (BRDF) of the ocean in July and August 2001 under different illumination conditions with solar zenith angles ranging from 15° to 46°. The BRDF measurements were accompanied by concurrent measurements of atmospheric aerosol optical thickness and column water vapor above the airplane. The method of spherical harmonics with Cox–Munk wave-slope distribution is used in a new algorithm developed for this study to solve the atmosphere–ocean radiative transfer problem and to remove the effects of the atmosphere from airborne measurements. The algorithm retrieves simultaneously the wind speed and full ocean BRDF (sun’s glitter and water-leaving radiance) from CAR measurements and evaluates total albedo and equivalent albedo for the water-leaving radiance outside the glitter. Results show good overall agreement with other measurements and theoretical simulations, with the anisotropy of the water-leaving radiance clearly seen. However, the water-leaving radiance does not show a strong dependence on solar zenith angle as suggested by some theoretical studies. The spectral albedo was found to vary from 4.1%–5.1% at λ = 0.472 μm to 2.4%–3.5% for λ ≥ 0.682 μm. The equivalent water-leaving albedo ranges from 1.0%–2.4% at λ = 0.472 μm to 0.1%–0.6% for λ = 0.682 μm and 0.1%–0.3% for λ = 0.870 μm. Results of the validation of the Cox–Munk model under the conditions measured show that although the model reproduces the shape of sun’s glitter on average with an accuracy of better than 30%, it underestimates the center of the sun’s glitter reflectance by about 30% for low wind speeds (<2–3 m s−1). In cases of high wind speed, the model with Gram–Charlier expansion seems to provide the best fit.


Author(s):  
Shakeel Asharaf ◽  
Duane E. Waliser ◽  
Derek J. Posselt ◽  
Christopher S. Ruf ◽  
Chidong Zhang ◽  
...  

AbstractSurface wind plays a crucial role in many local/regional weather and climate processes, especially through the exchanges of energy, mass and momentum across the Earth’s surface. However, there is a lack of consistent observations with continuous coverage over the global tropical ocean. To fill this gap, the NASA Cyclone Global Navigation Satellite System (CYGNSS) mission was launched in December 2016, consisting of a constellation of eight small spacecrafts that remotely sense near surface wind speed over the tropical and sub-tropical oceans with relatively high sampling rates both temporally and spatially. This current study uses data obtained from the Tropical Moored Buoy Arrays to quantitatively characterize and validate the CYGNSS derived winds over the tropical Indian, Pacific, and Atlantic Oceans. The validation results show that the uncertainty in CYGNSS wind speed, as compared with these tropical buoy data, is less than 2 m s-1 root mean squared difference, meeting the NASA science mission Level-1 uncertainty requirement for wind speeds below 20 m s-1. The quality of the CYGNSS wind is further assessed under different precipitation conditions, and in convective cold-pool events, identified using buoy rain and temperature data. Results show that CYGNSS winds compare fairly well with buoy observations in the presence of rain, though at low wind speeds the presence of rain appears to cause a slight positive wind speed bias in the CYGNSS data. The comparison indicates the potential utility of the CYGNSS surface wind product, which in turn may help to unravel the complexities of air-sea interaction in regions that are relatively under-sampled by other observing platforms.


1959 ◽  
Vol 40 (2) ◽  
pp. 49-52 ◽  
Author(s):  
L. J. Anderson

A simple instrument is described for measuring or recording wind speed, using a 1-in. length of heated platinum wire as the sensing element. As a practical laboratory and field device, its main virtues are its excellent response at low wind speeds and its utility in confined spaces. Calibration techniques are described, and the circuit diagram is included for a three-range instrument.


2020 ◽  
Vol 77 (11) ◽  
pp. 3759-3768
Author(s):  
Charles L. Vincent ◽  
Hans C. Graber ◽  
Clarence O. Collins

AbstractBuoy observations from a 1999 Gulf of Mexico field program (GOM99) are used to investigate the relationships among friction velocity u*, wind speed U, and amount of swell present. A U–u*sea parameterization is developed for the case of pure wind sea (denoted by u*sea), which is linear in U over the range of available winds (2–16 m s−1). The curve shows no sign of an inflection point near 7–8 m s−1 as suggested in a 2012 paper by Andreas et al. on the basis of a transition from smooth to rough flow. When observations containing more than minimal swell energy are included, a different U–u* equation for U < 8 m s−1 is found, which would intersect the pure wind-sea curve about 7–8 m s−1. These two relationships yield a bilinear curve similar to Andreas et al. with an apparent inflection near 7–8 m s−1. The absence of the inflection in the GOM99 experiment pure wind-sea curve and the similarity of the GOM99 swell-dominated low wind speed to Andreas et al.’s low wind speed relationship suggest that the inflection may be due to the effect of swell and not a flow transition. Swell heights in the range of only 25–50 cm may be sufficient to impact stress at low wind speeds.


2007 ◽  
Vol 24 (6) ◽  
pp. 1131-1142 ◽  
Author(s):  
Anant Parekh ◽  
Rashmi Sharma ◽  
Abhijit Sarkar

A 2-yr (June 1999–June 2001) observation of ocean surface wind speed (SWS) and sea surface temperature (SST) derived from microwave radiometer measurements made by a multifrequency scanning microwave radiometer (MSMR) and the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is compared with direct measurements by Indian Ocean buoys. Also, for the first time SWS and SST values of the same period obtained from 40-yr ECMWF Re-Analysis (ERA-40) have been evaluated with these buoy observations. The SWS and SST are shown to have standard deviations of 1.77 m s−1 and 0.60 K for TMI, 2.30 m s−1 and 2.0 K for MSMR, and 2.59 m s−1 and 0.68 K for ERA-40, respectively. Despite the fact that MSMR has a lower-frequency channel, larger values of bias and standard deviation (STD) are found compared to those of TMI. The performance of SST retrieval during the daytime is found to be better than that at nighttime. The analysis carried out for different seasons has raised an important question as to why one spaceborne instrument (TMI) yields retrievals with similar biases during both pre- and postmonsoon periods and the other (MSMR) yields drastically different results. The large bias at low wind speeds is believed to be due to the poorer sensitivity of microwave emissivity variations at low wind speeds. The extreme SWS case study (cyclonic condition) showed that satellite-retrieved SWS captured the trend and absolute magnitudes as reflected by in situ observations, while the model (ERA-40) failed to do so. This result has direct implications on the real-time application of satellite winds in monitoring extreme weather events.


2010 ◽  
Vol 49 (9) ◽  
pp. 1805-1817
Author(s):  
Veronica E. Wannberg ◽  
Gustavious Williams ◽  
Patrick Sawyer ◽  
Richard Venedam

Abstract A unique field dataset from a series of low–wind speed experiments, modeling efforts using three commonly used models to replicate these releases, and statistical analysis of how well these models were able to predict the plume concentrations is presented. The experiment was designed to generate a dataset to describe the behavior of gaseous plumes under low-wind conditions and the ability of current, commonly used models to predict these movements. The dataset documents the release and transport of three gases: ammonia (buoyant), ethylene (neutral), and propylene (dense) in low–wind speed (diffusion) conditions. Release rates ranged from 1 to 20 kg h−1. Ammonia and ethylene had five 5-min releases each to represent puff releases and five 20-min releases each to represent plume releases. Propylene had five 5-min puffs, six 20-min plumes, and a single 30-min plume. Thirty-two separate releases ranging from 6 to 47 min were conducted, of which only 30 releases generated useful data. The data collected included release rates, atmospheric concentrations to 100 m from the release point, and local meteorological conditions. The diagnostics included nine meteorological stations on 100-m centers and 36 photoionization detectors in a radial pattern. Three current state-of-the-practice models, Aerial Locations of Hazardous Atmospheres (ALOHA), Emergency Prediction Information code (EPIcode), and Second-Order Closure Integrated Puff (SCIPUFF), were used to try to duplicate the measured field results. Low wind speeds are difficult to model, and all of the models had difficulty replicating the field measurements. However, the work does show that these models, if used correctly, are conservative (overpredict concentrations) and can be used for safety and emergency planning.


Sign in / Sign up

Export Citation Format

Share Document