scholarly journals Olfactory System Morphology Suggests Colony Size Drives Trait Evolution in Odorous Ants (Formicidae: Dolichoderinae)

2021 ◽  
Vol 9 ◽  
Author(s):  
R. Keating Godfrey ◽  
Jill T. Oberski ◽  
Taylor Allmark ◽  
Caleb Givens ◽  
Jessica Hernandez-Rivera ◽  
...  

In social insects colony fitness is determined in part by individual worker phenotypes. Across ant species, colony size varies greatly and is thought to affect worker trait variation in both proximate and ultimate ways. Little is known about the relationship between colony size and worker trait evolution, but hypotheses addressing the role of social structure in brain evolution suggest workers of small-colony species may have larger brains or larger brain regions necessary for complex behaviors. In previous work on odorous ants (Formicidae: Dolichoderinae) we found no correlation between colony size and these brain properties, but found that relative antennal lobe size scaled negatively with colony size. Therefore, we now test whether sensory systems scale with colony size, with particular attention to olfactory components thought to be involved in nestmate recognition. Across three species of odorous ants, Forelius mccooki, Dorymyrmex insanus, and D. bicolor, which overlap in habitat and foraging ecology but vary in colony size, we compare olfactory sensory structures, comparing those thought to be involved in nestmate recognition. We use the visual system, a sensory modality not as important in social communication in ants, as a control comparison. We find that body size scaling largely explains differences in eye size, antennal length, antennal sensilla density, and total number of olfactory glomeruli across these species. However, sensilla basiconica and olfactory glomeruli in the T6 cluster of the antennal lobe, structures known to be involved in nestmate recognition, do not follow body size scaling observed for other structures. Instead, we find evidence from the closely related Dorymyrmex species that the larger colony species, D. bicolor, invests more in structures implicated in nestmate recognition. To test for functional consequences, we compare nestmate and non-nestmate interactions between these two species and find D. bicolor pairs of either type engage in more interactions than D. insaus pairs. Thus, we do not find evidence supporting a universal pattern of sensory system scaling associated with changes in colony size, but hypothesize that observed differences in the olfactory components in two closely related Dorymyrmex species are evidence of a link between colony size and sensory trait evolution.

2021 ◽  
Author(s):  
Luis M. Franco ◽  
Emre Yaksi

ABSTRACTOngoing neural activity has been observed across several brain regions and thought to reflect the internal state of the brain. Yet, it is not fully understood how ongoing brain activity interacts with sensory experience and shape sensory representations. Here, we show that projection neurons of the fruit fly antennal lobe exhibit spatiotemporally organized ongoing activity in the absence of odor stimulation. Upon repeated exposure to odors, we observe a gradual and long-lasting decrease in the amplitude and frequency of spontaneous calcium events, as well as a reorganization of correlations between olfactory glomeruli during ongoing activity. Accompanying these plastic changes, we find that repeated odor experience reduces trial-to-trial variability and enhances the specificity of odor representations. Our results reveal a previously undescribed experience-dependent plasticity of ongoing and sensory driven activity at peripheral levels of the fruit fly olfactory system.


2021 ◽  
pp. 251660852098429
Author(s):  
Dorcas B. C. Gandhi ◽  
Ivy Anne Sebastian ◽  
Komal Bhanot

Sensory dysfunction is one of the common impairments that occurs post stroke. With sensory changes in all modalities, it also affects the quality of life and incites suicidal thoughts. The article attempts to review and describe the current evidence of various approaches of assessment and rehabilitation for post-stroke sensory dysfunction. After extensive electronic database search across Medline, Embase, EBSCO, and Cochrane library, it generated 2433 results. After screening according to inclusion and exclusion criteria, we included 11 studies. We categorized data based on type of sensory deficits and prevalence, role of sensory system on motor behavior, type of intervention, sensory modality targeted, and dosage of intervention and outcome measures used for rehabilitation. Results found the strong evidence of involvement of primary and secondary motor areas involved in processing and responding to somatosensation, respectively. We divided rehabilitation approaches into sensory stimulation approach and sensory retraining approach focused on using external stimuli and relearning, respectively. However, with varied aims and targeted sensory involvement, the study applicability is affected. Thus, this emerges the need of extensive research in future for evidence-based practice of assessments and rehabilitation on post-stroke sensory rehabilitation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryo Kitada ◽  
Jinhwan Kwon ◽  
Ryuichi Doizaki ◽  
Eri Nakagawa ◽  
Tsubasa Tanigawa ◽  
...  

AbstractUnlike the assumption of modern linguistics, there is non-arbitrary association between sound and meaning in sound symbolic words. Neuroimaging studies have suggested the unique contribution of the superior temporal sulcus to the processing of sound symbolism. However, because these findings are limited to the mapping between sound symbolism and visually presented objects, the processing of sound symbolic information may also involve the sensory-modality dependent mechanisms. Here, we conducted a functional magnetic resonance imaging experiment to test whether the brain regions engaged in the tactile processing of object properties are also involved in mapping sound symbolic information with tactually perceived object properties. Thirty-two healthy subjects conducted a matching task in which they judged the congruency between softness perceived by touch and softness associated with sound symbolic words. Congruency effect was observed in the orbitofrontal cortex, inferior frontal gyrus, insula, medial superior frontal gyrus, cingulate gyrus, and cerebellum. This effect in the insula and medial superior frontal gyri was overlapped with softness-related activity that was separately measured in the same subjects in the tactile experiment. These results indicate that the insula and medial superior frontal gyrus play a role in processing sound symbolic information and relating it to the tactile softness information.


1995 ◽  
Vol 28 (2) ◽  
pp. 248-267 ◽  
Author(s):  
Lynne A. Oland ◽  
Sheila R. Kirschenbaum ◽  
Wendy M. Pott ◽  
Alison R. Mercer ◽  
Leslie P. Tolbert

2015 ◽  
Vol 282 (1810) ◽  
pp. 20151008 ◽  
Author(s):  
Kristina Noreikiene ◽  
Gábor Herczeg ◽  
Abigél Gonda ◽  
Gergely Balázs ◽  
Arild Husby ◽  
...  

The mosaic model of brain evolution postulates that different brain regions are relatively free to evolve independently from each other. Such independent evolution is possible only if genetic correlations among the different brain regions are less than unity. We estimated heritabilities, evolvabilities and genetic correlations of relative size of the brain, and its different regions in the three-spined stickleback ( Gasterosteus aculeatus ). We found that heritabilities were low (average h 2 = 0.24), suggesting a large plastic component to brain architecture. However, evolvabilities of different brain parts were moderate, suggesting the presence of additive genetic variance to sustain a response to selection in the long term. Genetic correlations among different brain regions were low (average r G = 0.40) and significantly less than unity. These results, along with those from analyses of phenotypic and genetic integration, indicate a high degree of independence between different brain regions, suggesting that responses to selection are unlikely to be severely constrained by genetic and phenotypic correlations. Hence, the results give strong support for the mosaic model of brain evolution. However, the genetic correlation between brain and body size was high ( r G = 0.89), suggesting a constraint for independent evolution of brain and body size in sticklebacks.


Author(s):  
Matías Arim ◽  
Mauro Berazategui ◽  
Juan M. Barreneche ◽  
Lucia Ziegler ◽  
Matías Zarucki ◽  
...  
Keyword(s):  

Insects ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 886
Author(s):  
Silvana Piersanti ◽  
Manuela Rebora ◽  
Gianandrea Salerno ◽  
Sylvia Anton

Dragonflies are hemimetabolous insects, switching from an aquatic life style as nymphs to aerial life as adults, confronted to different environmental cues. How sensory structures on the antennae and the brain regions processing the incoming information are adapted to the reception of fundamentally different sensory cues has not been investigated in hemimetabolous insects. Here we describe the antennal sensilla, the general brain structure, and the antennal sensory pathways in the last six nymphal instars of Libellula depressa, in comparison with earlier published data from adults, using scanning electron microscopy, and antennal receptor neuron and antennal lobe output neuron mass-tracing with tetramethylrhodamin. Brain structure was visualized with an anti-synapsin antibody. Differently from adults, the nymphal antennal flagellum harbors many mechanoreceptive sensilla, one olfactory, and two thermo-hygroreceptive sensilla at all investigated instars. The nymphal brain is very similar to the adult brain throughout development, despite the considerable differences in antennal sensilla and habitat. Like in adults, nymphal brains contain mushroom bodies lacking calyces and small aglomerular antennal lobes. Antennal fibers innervate the antennal lobe similar to adult brains and the gnathal ganglion more prominently than in adults. Similar brain structures are thus used in L. depressa nymphs and adults to process diverging sensory information.


Paleobiology ◽  
2013 ◽  
Vol 39 (1) ◽  
pp. 109-122 ◽  
Author(s):  
Douglas S. Glazier ◽  
Matthew G. Powell ◽  
Travis J. Deptola

We infer the body-size scaling slope of metabolic rate in a trilobite by applying a cell-size model that has been proposed to explain metabolic scaling in living organisms. This application is especially tractable in fossil arthropods with well-preserved compound eyes because the number and size of eye facets appear to be useful proxies for the relative number and size of cells in the body. As a case study, we examined the ontogenetic scaling of facet size and number in a ∼390-Myr-old local assemblage of the trilobite Eldredgeops rana, which has well-preserved compound eyes and a wide body-size range. Growth in total eye lens area resulted from increases in both facet area and number in relatively small (presumably young) specimens, but only from increases in facet area in large (presumably more mature) specimens. These results suggest that early growth in E. rana involved both cell multiplication and enlargement, whereas later growth involved only cell enlargement. If the cell-size model is correct, then metabolic rate scaled allometrically in E. rana, and the scaling slope of log metabolic rate versus log body mass decreased from ∼0.85 to 0.63 as these animals grew. This inferred age-specific change in metabolic scaling is consistent with similar changes frequently observed in living animals. Additional preliminary analyses of literature data on other trilobites also suggest that the metabolic scaling slope was <1 in benthic species, but ∼1 in pelagic species, as has also been observed in living invertebrates. The eye-facet size (EFS) method featured here opens up new possibilities for examining the bioenergetic allometry of extinct arthropods.


2020 ◽  
Vol 7 (8) ◽  
pp. 200628
Author(s):  
Rebecca Katajamaa ◽  
Per Jensen

Brain size reduction is a common trait in domesticated species when compared to wild conspecifics. This reduction can happen through changes in individual brain regions as a response to selection on specific behaviours. We selected red junglefowl for 10 generations for diverging levels of fear towards humans and measured brain size and composition as well as habituation learning and conditioned place preference learning in young chicks. Brain size relative to body size as well as brainstem region size relative to whole brain size were significantly smaller in chicks selected for low fear of humans compared to chicks selected for high fear of humans. However, when including allometric effects in the model, these differences disappear but a tendency towards larger cerebra in low-fear chickens remains. Low-fear line chicks habituated more effectively to a fearful stimulus with prior experience of that same stimulus, whereas high-fear line chicks with previous experience of the stimulus had a response similar to naive chicks. The phenotypical changes are in line with previously described effects of domestication.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Francesco Lacquaniti ◽  
Gianfranco Bosco ◽  
Silvio Gravano ◽  
Iole Indovina ◽  
Barbara La Scaleia ◽  
...  

Gravity is crucial for spatial perception, postural equilibrium, and movement generation. The vestibular apparatus is the main sensory system involved in monitoring gravity. Hair cells in the vestibular maculae respond to gravitoinertial forces, but they cannot distinguish between linear accelerations and changes of head orientation relative to gravity. The brain deals with this sensory ambiguity (which can cause some lethal airplane accidents) by combining several cues with the otolith signals: angular velocity signals provided by the semicircular canals, proprioceptive signals from muscles and tendons, visceral signals related to gravity, and visual signals. In particular, vision provides both static and dynamic signals about body orientation relative to the vertical, but it poorly discriminates arbitrary accelerations of moving objects. However, we are able to visually detect the specific acceleration of gravity since early infancy. This ability depends on the fact that gravity effects are stored in brain regions which integrate visual, vestibular, and neck proprioceptive signals and combine this information with an internal model of gravity effects.


Sign in / Sign up

Export Citation Format

Share Document