scholarly journals Constraints and Opportunities for the Evolution of Metamorphic Organisms in a Changing Climate

2021 ◽  
Vol 9 ◽  
Author(s):  
Yuichiro Suzuki ◽  
Lyanna Toh

We argue that developmental hormones facilitate the evolution of novel phenotypic innovations and timing of life history events by genetic accommodation. Within an individual’s life cycle, metamorphic hormones respond readily to environmental conditions and alter adult phenotypes. Across generations, the many effects of hormones can bias and at times constrain the evolution of traits during metamorphosis; yet, hormonal systems can overcome constraints through shifts in timing of, and acquisition of tissue specific responses to, endocrine regulation. Because of these actions of hormones, metamorphic hormones can shape the evolution of metamorphic organisms. We present a model called a developmental goblet, which provides a visual representation of how metamorphic organisms might evolve. In addition, because developmental hormones often respond to environmental changes, we discuss how endocrine regulation of postembryonic development may impact how organisms evolve in response to climate change. Thus, we propose that developmental hormones may provide a mechanistic link between climate change and organismal adaptation.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dennis Rödder ◽  
Thomas Schmitt ◽  
Patrick Gros ◽  
Werner Ulrich ◽  
Jan Christian Habel

AbstractClimate change impacts biodiversity and is driving range shifts of species and populations across the globe. To understand the effects of climate warming on biota, long-term observations of the occurrence of species and detailed knowledge on their ecology and life-history is crucial. Mountain species particularly suffer under climate warming and often respond to environmental changes by altitudinal range shifts. We assessed long-term distribution trends of mountain butterflies across the eastern Alps and calculated species’ specific annual range shifts based on field observations and species distribution models, counterbalancing the potential drawbacks of both approaches. We also compiled details on the ecology, behaviour and life-history, and the climate niche of each species assessed. We found that the highest altitudinal maxima were observed recently in the majority of cases, while the lowest altitudes of observations were recorded before 1980. Mobile and generalist species with a broad ecological amplitude tended to move uphill more than specialist and sedentary species. As main drivers we identified climatic conditions and topographic variables, such as insolation and solar irradiation. This study provides important evidence for responses of high mountain taxa to rapid climate change. Our study underlines the advantage of combining historical surveys and museum collection data with cutting-edge analyses.


Author(s):  
J. B. Brown-Gilpin

The wide variety of reproductive patterns and behaviour in the many species of Nereidae already studied clearly justifies further research. But the life history of Nereis fucata (Savigny) is not only of interest from the comparative point of view. Its commensal habit (it occurs within shells occupied by hermit crabs) immediately gives it a special importance. This alone warrants a detailed study, particularly as no commensal polychaete has yet been reared through to metamorphosis and settlement on its host (Davenport, 1955; Davenport & Hickok, 1957). The numerous interesting problems which arise, and the experimental methods needed to study them, are, however, beyond the range of a paper on nereid development. It is therefore proposed to confine the present account to the reproduction and development up to the time when the larvae settle on the bottom. The complete life cycle, the mechanism of host-adoption, and related topics, will be reported in later papers.


2020 ◽  
Vol 117 (30) ◽  
pp. 18119-18126 ◽  
Author(s):  
Line S. Cordes ◽  
Daniel T. Blumstein ◽  
Kenneth B. Armitage ◽  
Paul J. CaraDonna ◽  
Dylan Z. Childs ◽  
...  

Seasonal environmental conditions shape the behavior and life history of virtually all organisms. Climate change is modifying these seasonal environmental conditions, which threatens to disrupt population dynamics. It is conceivable that climatic changes may be beneficial in one season but result in detrimental conditions in another because life-history strategies vary between these time periods. We analyzed the temporal trends in seasonal survival of yellow-bellied marmots (Marmota flaviventer) and explored the environmental drivers using a 40-y dataset from the Colorado Rocky Mountains (USA). Trends in survival revealed divergent seasonal patterns, which were similar across age-classes. Marmot survival declined during winter but generally increased during summer. Interestingly, different environmental factors appeared to drive survival trends across age-classes. Winter survival was largely driven by conditions during the preceding summer and the effect of continued climate change was likely to be mainly negative, whereas the likely outcome of continued climate change on summer survival was generally positive. This study illustrates that seasonal demographic responses need disentangling to accurately forecast the impacts of climate change on animal population dynamics.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
G. Masó ◽  
J. Kaufmann ◽  
H. Clavero ◽  
P. S. Fitze

Abstract Whether and how differences in environmental predictability affect life-history traits is controversial and may depend on mean environmental conditions. Solid evidence for effects of environmental predictability are lacking and thus, the consequences of the currently observed and forecasted climate-change induced reduction of precipitation predictability are largely unknown. Here we experimentally tested whether and how changes in the predictability of precipitation affect growth, reproduction, and survival of common lizard Zootoca vivipara. Precipitation predictability affected all three age classes. While adults were able to compensate the treatment effects, yearlings and juvenile females were not able to compensate negative effects of less predictable precipitation on growth and body condition, respectively. Differences among the age-classes’ response reflect differences (among age-classes) in the sensitivity to environmental predictability. Moreover, effects of environmental predictability depended on mean environmental conditions. This indicates that integrating differences in environmental sensitivity, and changes in averages and the predictability of climatic variables will be key to understand whether species are able to cope with the current climatic change.


Parasitology ◽  
2016 ◽  
Vol 144 (4) ◽  
pp. 464-474 ◽  
Author(s):  
C. LAGRUE ◽  
R. RINNEVALLI ◽  
R. POULIN

SUMMARYA number of parasites with complex life cycles can abbreviate their life cycles to increase the likelihood of reproducing. For example, some trematodes can facultatively skip the definitive host and produce viable eggs while still inside their intermediate host. The resulting shorter life cycle is clearly advantageous when transmission probabilities to the definitive hosts are low. Coitocaecum parvum can mature precociously (progenesis), and produce eggs by selfing inside its amphipod second intermediate host. Environmental factors such as definitive host density and water temperature influence the life-history strategy adopted by C. parvum in their crustacean host. However, it is also possible that information about transmission opportunities gathered earlier in the life cycle (i.e. by cercariae-producing sporocysts in the first intermediate host) could have priming effects on the adoption of one or the other life strategy. Here we document the effects of environmental parameters (host chemical cues and temperature) on cercarial production within snail hosts and parasite life-history strategy in the amphipod host. We found that environmental cues perceived early in life have limited priming effects on life-history strategies later in life and probably account for only a small part of the variation among conspecific parasites. External cues gathered at the metacercarial stage seem to largely override potential effects of the environmental conditions experienced by early stages of the parasite.


Author(s):  
Junnosuke Horita ◽  
Yoh Iwasa ◽  
Yuuya Tachiki

AbstractThe enhanced or reduced growth of juvenile masu salmon (Oncorhynchus masou masou) may result from climate changes to their environment and thus impact on the eco-evolutionary dynamics of their life-history choices. Male juveniles with status, i.e., if their body size is larger than a threshold, stay in the stream and become resident males reproducing for multiple years, while those with smaller status, i.e., their body size is below the threshold, migrate to the ocean and return to the stream one year later to reproduce only once. Since juvenile growth is suppressed by the density of resident males, the fraction of resident males may stay in equilibrium or fluctuate wildly over a 2-year period. When the threshold value evolves, the convergence stable strategy may generate either an equilibrium or large fluctuations of male residents. If environmental changes occur faster than the rate of evolutionary adaptation, the eco-evolutionary dynamics exhibit a qualitative shift in the population dynamics. We also investigated the relative assessment models, in which individual life-history choices are made based on the individual’s relative status within the juvenile population. The eco-evolutionary dynamics are very different from the absolute assessment model, demonstrating the importance of understanding the mechanisms of life history choices when predicting the impacts of climate change.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Marina Wolz ◽  
Michael Klockmann ◽  
Torben Schmitz ◽  
Stano Pekár ◽  
Dries Bonte ◽  
...  

Abstract Background Dispersal and reproduction are key life-history traits that jointly determine species’ potential to expand their distribution, for instance in light of ongoing climate change. These life-history traits are known to be under selection by changing local environmental conditions, but they may also evolve by spatial sorting. While local natural selection and spatial sorting are mainly studied in model organisms, we do not know the degree to which these processes are relevant in the wild, despite their importance to a comprehensive understanding of species’ resistance and tolerance to climate change. Methods The wasp spider Argiope bruennichi has undergone a natural range expansion - from the Mediterranean to Northern Europe during the recent decades. Using reciprocal common garden experiments in the laboratory, we studied differences in crucial traits between replicated core (Southern France) and edge (Baltic States) populations. We tested theoretical predictions of enhanced dispersal (ballooning behaviour) and reproductive performance (fecundity and winter survival) at the expansion front due to spatial sorting and local environmental conditions. Results Dispersal rates were not consistently higher at the northern expansion front, but were impacted by the overwintering climatic conditions experienced, such that dispersal was higher when spiderlings had experienced winter conditions as occur in their region. Hatching success and winter survival were lower at the range border. In agreement with theoretical predictions, spiders from the northern leading edge invested more in reproduction for their given body size. Conclusions We found no evidence for spatial sorting leading to higher dispersal in northern range edge populations of A. bruennichi. However, reproductive investment and overwintering survival between core and edge populations differed. These life-history traits that directly affect species’ expansion rates seem to have diverged during the recent range expansion of A. bruennichi. We discuss the observed changes with respect to the species’ natural history and the ecological drivers associated with range expansion to northern latitudes.


2018 ◽  
Vol 1 ◽  
Author(s):  
David Fernandez ◽  
Andrés Millán ◽  
Valeria Rizzo ◽  
Jordi Comas ◽  
Enric Lleopard ◽  
...  

One of the main challenges in disciplines such as ecology, biogeography, conservation and evolutionary biology is to understand and predict how species will respond to environmental changes, especially within a climate change context. We focus on the deep subterranean environment to minimize uncertainties in predictions, because it is one of the few ecosystems in nature whose environmental conditions are as homogeneous as those in the laboratory and their species cannot accommodate to changing conditions by behavioural plasticity, dispersal or microhabitat use (i.e., their only possibility to cope with climate change is to persist in situ). The hypotheses established for this project are based on the exciting results obtained in some of our previous studies, in which, we found that different subterranean beetle species living under different environmental conditions have identical/similar narrow thermal tolerance ranges, suggesting a lack of evolutionary adjustment to ambient temperature for these species. This could be due to the loss of some of the physiological mechanisms related to thermal tolerance, with a likely high metabolic cost, in a stable environment but with severe resource restrictions. However, the question that remains is to what extent this surprising narrow and homogeneous thermal niche is common for the whole subterranean biodiversity, and how this issue could determine the fate of subterranean biodiversity to climate change. In this project, we are testing for the generality of these exciting previous findings by studying the thermal niche (species acclimation abilities and thermal tolerances) of different lineages of cave beetles with different degrees of specialization to subterranean environments and from different geographical areas (Pyrenees and Cantabrian Mountains) (Suppl. material 1).


Author(s):  
Katrina McGuigan ◽  
Ary A. Hoffmann ◽  
Carla M. Sgrò

Transgenerational effects that are interpreted in terms of epigenetics have become an important research focus at a time when rapid environmental changes are occurring. These effects are usually interpreted as enhancing fitness extremely rapidly, without depending on the slower process of natural selection changing DNA-encoded (fixed) genetic variants in populations. Supporting evidence comes from a variety of sources, including environmental associations with epialleles, cross-generation responses of clonal material exposed to different environmental conditions, and altered patterns of methylation or frequency changes in epialleles across time. Transgenerational environmental effects have been postulated to be larger than those associated with DNA-encoded genetic changes, based on (for instance) stronger associations between epialleles and environmental conditions. Yet environmental associations for fixed genetic differences may always be weak under polygenic models where multiple combinations of alleles can lead to the same evolutionary outcome. The ultimate currency of adaptation is fitness, and few transgenerational studies have robustly determined fitness effects, particularly when compared to fixed genetic variants. Not all transgenerational modifications triggered by climate change will increase fitness: stressful conditions often trigger negative fitness effects across generations that can eliminate benefits. Epigenetic responses and other transgenerational effects will undoubtedly play a role in climate change adaptation, but further, well-designed, studies are required to test their importance relative to DNA-encoded changes. This article is part of the theme issue ‘How does epigenetics influence the course of evolution?’


Author(s):  
Ismed Jauhar ◽  
Amang Sudarsono ◽  
Mike Yuliana

Along with the many environmental changes, it enables a disaster either natural or man-made objects. One of the efforts made to prevent disasters from happening is to make a system that is able to provide information about the status of the environment that is around. Many developments in the sensor system makes it possible to load a system that will supply real-time on the status of environmental conditions with a good security system. This study created a supply system status data of environmental conditions, especially on bridges by using Ubiquitous Sensor Network. Sensor used to detect vibrations are using an accelerometer. Supply of data between sensors and servers using ZigBee communication protocol wherein the data communication will be done using the Elliptic Curve Integrated security mechanisms Encryption Scheme and on the use of Elliptic Curve key aggrement Menezes-Qu-Vanstone. Test results show the limitation of distance for communication is as far as 55 meters, with the computation time for encryption and decryption with 97 and 42 seconds extra time for key exchange is done at the beginning of communication .Keywords: Ubiquitous Sensor Network, Accelerometer, ZigBee,Elliptic Curve Menezes-Qu-Vanstone


Sign in / Sign up

Export Citation Format

Share Document