scholarly journals Carbon Emissions From Oil Palm Plantations on Peat Soil

Author(s):  
Frances Claire Manning ◽  
Lip Khoon Kho ◽  
Timothy Charles Hill ◽  
Thomas Cornulier ◽  
Yit Arn Teh
Keyword(s):  
Oil Palm ◽  
Anthropocene ◽  
2018 ◽  
Vol 22 ◽  
pp. 31-39 ◽  
Author(s):  
Alue Dohong ◽  
Ammar Abdul Aziz ◽  
Paul Dargusch

2016 ◽  
Vol 24 (1) ◽  
pp. 39-46
Author(s):  
Winarna Winarna ◽  
Iput Pradiko ◽  
Muhdan Syarovy ◽  
Fandi Hidayat

Development of oil palm plantation on peatland was faced with hydrophobicity problem caused by over drained. Hydrophobicity could reduce water retention and nutrient availability in the peat soil. Beside of proper water management application, addition of soil ameliorant which contain iron could increase stability and improve peat soil fertility. The study was conducted to obtain the effect of steel slag on peat soil properties and hydrophobicity. In this study, peat soil was incorporated with steel slag and incubated in 60 days period. The research was employed completely randomized design (CRD) factorial 2 x 2 x 4. First factor is peat maturity consists of two levels: sapric (S) and hemic (H), while the second factor is soil moisture which also consist of two levels: field capacity (W1) and dry (under the critical water content) (W2). The third factor is steel slag dosage which consist of four levels: 0 g pot (TB0), 7.17 g pot (TB1), 14.81 g -1 -1 pot (TB2), and 22.44 g pot (TB3). The result showed that application of steel slag significantly increase of soil pH, ash content, and water retention at pF 4.2. Furthermore, application of steel slag significantly reduce time for water reabsorption (wettability) in sapric. On the other hand, there are negative corellation between water penetration and soil pH, ash content, and water retention at pF 4.2. Overall, application of steel slag could increase wettability and prevent peat soil hydrophobicity.


Forests ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 770
Author(s):  
Guifang Liu ◽  
Qing Liu ◽  
Mengxiao Song ◽  
Junsheng Chen ◽  
Chuanrong Zhang ◽  
...  

Research Highlights: Our findings highlight that the contribution of carbon sequestration from plantations to REDD+ will remain limited, and that opportunity costs in Southeast Asia will likely increase, due to future oil palm expansion. Background and Objectives: Land use, land-use change, and forestry (LULUCF) are significant sources of carbon emissions. The United Nations Framework Convention on Climate Change (UNFCCC) agreed that the Reducing Emissions from Deforestation and Forest Degradation Plus program, also known as REDD+, could contribute to carbon sinks in tropical regions. These reductions could serve as carbon credits that offset emissions from other sources. Materials and Methods: This study uses the cellular automaton technique to simulate the business-as-usual (BAU) scenario and the gain-loss method, to measure carbon emissions resulting from forest conversion. The output of the integration of the models makes it possible to evaluate one of the most important financial costs: opportunity costs. Two scenarios (with and without consideration of carbon sequestration) in rubber and oil palm plantations are examined. Results: A sensitivity assessment in Kalimantan, Indonesia, shows that carbon sequestration from plantations affects value of opportunity costs less than social discount rates. Further analysis suggests that oil palm plantations have a greater impact than rubber plantations. Conclusions: Our study provides a case that can be applied to other regions for evaluating the impacts of plantation carbon sequestration, and insights that can help local policymakers design a financially attractive REDD+ program in other forest areas of the world.


2009 ◽  
Vol 4 (2) ◽  
pp. 123-130 ◽  
Author(s):  
Ch`ng Huck Ywih ◽  
Osumanu Haruna Ahmed ◽  
Nik Muhamad Ab. Majid ◽  
Mohamadu Boyie Jalloh

2020 ◽  
Author(s):  
Takashi Hirano

<p>Tropical peat swamp forest (PSF) is a unique ecosystem rich in carbon and water, which is widely distributed in Southeast Asia’s coastal lowlands, mainly in Borneo, Sumatra and Malay Peninsular. The ecosystem has accumulated a huge amount of organic carbon in peat soil over millennia under the condition of high groundwater level. However, PSF has been reduced and degraded by logging, drainage and burning mainly because of land conversion to oil palm and pulp wood plantations during the last two decades. Such human disturbances potentially increase carbon dioxide (CO<sub>2</sub>) emissions to the atmosphere through enhanced oxidative peat decomposition and the increased risk of peat fires. Thus, it is essentail to assess the current carbon status of tropical peatlands and quantify the effects of disturbance on the carbon balance to understand the role of tropical peatlands in the regional and global carbon balances. We have continuously measured ecosystem-scale eddy fluxes and soil fluxes of CO<sub>2</sub> and methane (CH<sub>4</sub>) in different tropical peat ecosystems, including a little drained PSF, a drained PSF, a burned ex-PSF and an oil palm plantation, in Central Kalimantan, Indonesia, and Sarawak, Malaysia, in Borneo. Based on the monitoring data, I’ll talk about the carbon balance of tropical peat ecosystems, such as its seasonal variation and its relationship with groundwwater level, and the effect of disturbance due to human activities and ENSO drought on the carbon flux and balance.</p>


2014 ◽  
Vol 13 (2) ◽  
pp. 139-147
Author(s):  
Mohammad Hertos

The purpose of this research was to find Pugam T and Urea interactions on the growth for Oil Palm in Pre Nursery to Peat Soil. The research was arranged in Completely Randomised with two factors and three duplications. This first factor was to find Pugam T (P) on four levels: 0 kg/ha (P0), 750 kg/ha (P1), 1000 kg/ha (P2) and 1.250 kg/ha (P3), the second factor was Urea (N) on four levels: 0 g/l (N0), 1 g/l (N1), 2 g/l (N2) and 3 g/l (N3). The results show the experiment of treatments Pugam T and Urea was significantly on the parameters: plant height, the stem of diameters, weight fresh of plant and root lengths of primers. The heighest yield to parameters of plant height in old 4,8 and 12 MST (10,57 cm, 31,03 cm and 35,00 cm), stem of diameters in old 4,8 and 12 MST (0,57 cm, 0,66 cm and 0,90 cm), weight fresh of plant (16,8 g) and root lengths of primers (26,08 cm). Obtainable on the treatments to find Pugam T as big as 1.250 kg/ha and Urea as big as 3 g/l (P3N3).


2020 ◽  
Vol 2 (2) ◽  
pp. 86-100
Author(s):  
Eko Kurniawan ◽  
Nelvia Nelvia ◽  
Wawan Wawan

 Planting of oil palm in peatland has been limited by soil physical, chemical properties, and hydrology, that`s way needed improvement on those matters to increase the productivity of peat and oil palm in peat soil by compacting. The purpose of this compacting is to improve the soil's physical, chemical properties, and soil moisture. A sampling of soil, water, and leaf were done in consecutive block 5,4,3,2,1,0 year after compacting and of planting done 4 years 10 months, 3 years  9 months, 2 years 9 months, 1 year 10 months, 11 months and 2 months, control used in this trial are origin condition (forest). Increasing bulk density was found at compacting block with 30 cm depth from the surface with the lower in 2 years after compacting at 0.09 g/cm3 and highest 4 years after compacting 0.4 g/cm3. In-depth of 60 cm from surface was found no increasing the bulk density 3 years after compacting 0.0 g/cm3 and the highest on 5 years after compacting 0.3 g/cm3 compared to forest. Decreasing on permeability in-depth 30 cm at 4 years after compacting 7.47 cm/jam and close to forest permeability 51.11 cm/hour is  2 years  43.6 cm/hour. As represent rise capillary consistently water content ≥ 80% achieved at depth 20 cm of surfaces on all block. Compaction doesn't regard pH, C organic, basa's saturation, capacity exchange cation. On depth 30 cm  P-total lower  on s without compaction at  599.6 ppm and above 871.6 ppm on 5 yr than forest 585 ppm.  P available most low 58.1 ppm happens on 4 yr afters is compacted and p available forest 53.9 ppm. Nutrient content B, Cu and Zn at soil not influenced by compaction. Fosfor (P) in water increases with added years after compaction lower at 39.1 mg/L  in the block without compaction compare  of forest that 40.8 mg/L. Leaf nutrient rate on compacted block on optimum until excess where N (2. 69 – 3.15 %) , P (0. 170 – 0.209 %) , K( 0. 952 – 1.11%) , Mg ( 0. 377 – 0.497%) , except  on block without compacting K (0. 830 %)  and Mg (0. 190%)  at deficiency and 0 years afters compaction Mg leaf on level deficiency 0. 230%. Nutrient content of  B, Cu and Zn at various level and not influenced  by compacting.


Sign in / Sign up

Export Citation Format

Share Document