scholarly journals Role of TLR4 in Persistent Leptospira interrogans Infection: A Comparative In Vivo Study in Mice

2021 ◽  
Vol 11 ◽  
Author(s):  
Nisha Nair ◽  
Mariana S. Guedes ◽  
Adeline M. Hajjar ◽  
Catherine Werts ◽  
Maria Gomes-Solecki

Toll-Like Receptor (TLR) 4, the LPS receptor, plays a central role in the control of leptospirosis and absence of TLR4 results in lethal infection in mice. Because human TLR4 does not sense the atypical leptospiral-LPS, we hypothesized that TLR4/MD-2 humanized transgenic mice (huTLR4) may be more susceptible to leptospirosis than wild-type mice, and thus may constitute a model of acute human leptospirosis. We infected huTLR4 mice, which express human TLR4 but not murine TLR4, with a high dose of L. interrogans serovar Copenhageni FioCruz (Leptospira) in comparison to C57BL/6J wild-type (WT) and, as a control, a congenic strain in which the tlr4 coding sequences are deleted (muTLR4Lps-del). We show that the huTLR4 gene is fully functional in the murine background. We found that dissemination of Leptospira in blood, shedding in urine, colonization of the kidney and overall kinetics of leptospirosis progression is equivalent between WT and huTLR4 C57BL/6J mice. Furthermore, inflammation of the kidney appeared to be subdued in huTLR4 compared to WT mice in that we observed less infiltrates of mononuclear lymphocytes, less innate immune markers and no relevant differences in fibrosis markers. Thus, huTLR4 mice showed less inflammation and kidney pathology, and are not more susceptible to leptospirosis than WT mice. This study is significant as it indicates that one intact TLR4 gene, be it mouse or human, is necessary to control acute leptospirosis.

Author(s):  
Nisha Nair ◽  
Mariana Soares Guedes ◽  
Adeline Hajjar ◽  
Catherine Werts ◽  
Maria Gomes-Solecki

AbstractToll-Like Receptor (TLR) 4, the LPS receptor, plays a central role in the control of leptospirosis and absence of TLR4 results in lethal infection in mice. Because human TLR4 does not sense the atypical leptospiral-LPS, we hypothesized that TLR4/MD-2 humanized transgenic mice (huTLR4) may be more susceptible to leptospirosis than wild-type mice, and thus may constitute a model of acute human leptospirosis. Therefore, we infected huTLR4 mice, which express human TLR4 but not murine TLR4, with a high but sublethal dose of L. interrogans serovar Copenhageni FioCruz (Leptospira) in comparison to C57BL/6J wildtype (WT) and, as a control, a congenic strain in which the tlr4 coding sequences are deleted (muTLR4Lps-del). We show that the huTLR4 gene is fully functional in the murine background. We found that dissemination of Leptospira in blood, shedding in urine, colonization of the kidney and overall kinetics of leptospirosis progression is equivalent between WT and huTLR4 C57BL/6J mice. Furthermore, inflammation of the kidney appeared to be subdued in huTLR4 compared to WT mice in that we observed less infiltrates of mononuclear lymphocytes, less innate immune markers and no relevant differences in fibrosis markers. Contrary to our hypothesis, huTLR4 mice showed less inflammation and kidney pathology, and are not more susceptible to leptospirosis than WT mice. This study is significant as it indicates that one intact TLR4 gene, be it mouse or human, is necessary to control acute leptospirosis.Contribution to the fieldDifferences of recognition exist between mouse and human TLR4, in that the anchor of LPS in the outer membrane of Leptospira (LipidA) activates murine, but not human TLR4. We hypothesized that if human TLR4 does not sense leptospiral-LPS, then transgenic mice in which murine TLR4 was replaced with human TLR4, should be more susceptible to Leptospira dissemination as compared to congenic wild-type mice, which could result in a more robust inflammatory response and pathology in the kidney. However, we found that impaired sensing of leptospiral-LPS in huTLR4 mice did not affect overall infection in comparison to wild-type mice and does not result in increased pathology of the kidney. Our study indicates that rather than leptospiral-LPS sensing, the presence of a fully functional TLR4 receptor is necessary to control acute leptospirosis.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1836-1836
Author(s):  
Price S. Blair ◽  
Qiansheng Ren ◽  
Gwenda J. Graham ◽  
James R. Dilks ◽  
Sidney W. Whiteheart ◽  
...  

Abstract Individuals whose platelets lack dense core or alpha-granules suffer varying degrees of abnormal bleeding, implying that granule cargo contributes to hemostasis. Despite these clinical observations, little is known regarding the effects of impaired platelet granule secretion on thrombus formation in vivo. The release of cargo from platelet granules requires a group of membrane proteins called SNAREs (Soluble NSF Attachment Protein Receptors) that mediate fusion of granule membranes to the plasma membrane and open canalicular system. Endobrevin/VAMP-8 is the primary vesicular-SNARE (v-SNARE) responsible for efficient release of dense core and a-granule contents. To evaluate the importance of VAMP-8-mediated secretion on the kinetics of thrombus formation in vivo, we measured platelet accumulation following laser-induced vascular injury in VAMP-8−/− mice. Three different phases of thrombus formation - initiation, maximal accumulation, and stabilized platelet accumulation - were tested. Analysis of initial thrombus formation from wild-type and VAMP-8−/− mice showed that average platelet accumulation in VAMP- 8−/− mice was 23% of accumulation in wild-type mice (P=0.009) at 30 sec following injury. There was a trend towards smaller maximal thrombus size in VAMP-8−/− mice, but the difference was not statistically significant (P=0.1). Average stabilized platelet accumulation at 180 sec in VAMP-8−/− mice was 40% of wild-type mice (P=0.05). Thus, thrombus formation is delayed and decreased in VAMP-8−/− mice, but not absent. Dense granule release occurs more rapidly than alpha-granule release, which does not occur for 2–3 min following laser-induced vascular injury. Agonist-induced dense granule release from VAMP-8−/− platelets is defective. To directly evaluate the role of dense granule release on the kinetics of thrombus formation, we assessed thrombus formation in the mouse model of Hermansky-Pudlak syndrome, ruby-eye, which lack dense granules. Thrombus formation following laser-induced vascular injury was nearly abolished in ruby-eye mice such that maximal platelet accumulation was 15% that of wild-type mice. In vitro, the thrombin doses required to induce irreversible aggregation in wild-type, VAMP-8−/−, and ruby-eye platelets were 25 mU, 50 mU, and 150 mU, respectively. Incubation with apyrase had little effect on thrombin-induced aggregation of VAMP-8−/− or ruby-eye platelets. In contrast, incubation of wild-type platelets with apyrase reduced their thrombin sensitivity compared to that of ruby-eye platelets. Supplementation with a substimulatory ADP concentration reversed the thrombin-induced aggregation defect in VAMP-8−/− and ruby-eye mice. Thus, defective ADP release is the primary abnormality leading to impaired aggregation in VAMP-8−/− and ruby-eye mice. Tail bleeding times were assessed in VAMP- 8−/− mice to evaluate the role of VAMP-8 in hemostasis. In contrast to ruby-eye mice, which have a markedly prolonged bleeding time, tail bleeding times in VAMP-8−/− mice were not significantly prolonged compared to those in wild-type mice. These results demonstrate the importance of VAMP-8 and dense granule release in the initial phases of thrombus formation and validate the distal platelet secretory machinery as a potential target for anti-platelet therapies.


2003 ◽  
Vol 23 (18) ◽  
pp. 6609-6617 ◽  
Author(s):  
Robert Endres ◽  
Georg Häcker ◽  
Inge Brosch ◽  
Klaus Pfeffer

ABSTRACT The silencer of death domains (SODD) has been proposed to prevent constitutive signaling of tumor necrosis factor receptor 1 (TNFR1) in the absence of ligand. Besides TNFR1, death receptor 3 (DR3), Hsp70/Hsc70, and Bcl-2 have been characterized as binding partners of SODD. In order to investigate the in vivo role of SODD, we generated mice congenitally deficient in expression of the sodd gene. No spontaneous inflammatory infiltrations were observed in any organ of these mice. Consistent with this finding, in the absence of SODD no alteration in the activation patterns of nuclear factor κB (NF-κB), stress kinases, or ERK1 or -2 was observed after stimulation with tumor necrosis factor (TNF). Activation of NF-κB by DR3 was also unchanged. The extents of DR3- and TNF-induced apoptosis were comparable in gene-deficient and wild-type cells. Protection of cells against heat shock as mediated by the Hsp70 system and against staurosporine-induced apoptosis was independent of SODD. Furthermore, resistance to high-dose lipopolysaccharide (LPS) injections, LPS-d-GalN injections, and infection with listeriae was similar in wild-type and gene-deficient mice. In conclusion, our data do not support the concept of a unique, nonredundant role of SODD for the functions of TNFR1, Hsp70, and DR3.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 252-252 ◽  
Author(s):  
Ashley T Martino ◽  
Masataka Suzuki ◽  
David Markusic ◽  
Irene Zolotukhin ◽  
Daniel A Muruve ◽  
...  

Abstract Abstract 252 Successful gene therapy for hemophilia requires therapeutic expression in the absence of destructive immune responses. Clinical trials have revealed that adaptive immune responses eliminated therapeutic levels of factor IX (F.IX) following high-dose hepatic in vivo gene transfer using single stranded (ss) AAV serotype 2 vector. More efficient AAV vectors have been developed using AAV2 with Y-F capsid mutations, alternate serotypes such as AAV8, and self-complimentary (sc) rAAV vectors. Innate immune responses to AAV in the liver are thought to be weak and highly transient. Our study sought to investigate whether variations in the capsid or genome will alter the immune profile. AAV vectors were delivered into the portal circulation of C3H/OuJ mice at 1011 vector genomes per mouse. We tested ssAAV-2, ssAAV2-triple Y-F mutant, ssAAV-8 vectors as well as scAAV-2 and scAAV-8 vectors, all expressing the hF.IX transgene. Quantitative RT-PCR array showed a mild transient up-regulation of MyD88, TLR-9, TNF-α, MCP-1, IP-10 and IFN-α/β within 2 hrs, which subsided by 6 hrs following delivery of ssAAV vectors, regardless of the capsid sequence/efficiency of hepatocyte transduction. In contrast, scAAV-2 and scAAV-8 vectors induced 4- to 8-fold increases in TLR-2, TLR-9, MyD88, TNF-α, MCP-1, IP-10, and IFN-α/β expression when compared to the ssAAV vectors. In addition, scAAV vectors induced expression of pro-inflammatory cytokines and chemokines not detected for ssAAV: IL-6, IL-12α, MIP-1, and RANTES. Paralleling this data was a 4-fold increase in local protein levels of IL-6, TNF-α, and MCP-1, and a systemic increase in IL-6. None of the vectors activated TLR-4, indicating that these effects cannot be attributed to LPS contamination. Several other innate response genes showed no differences in expression compared to PBS injected mice, which included IL-1α, IL-1β, KC, TLR-1, and TLR-3 to -8. The heightened innate response to scAAV vectors was further characterized by a 5-fold increase in macrophage and neutrophil infiltrates in liver sections, illustrating the potential for hepatotoxicity. Innate responses were absent in TLR-9 deficient C57BL/6 mice and in wild-type mice that had received an oligonucleotide ligand inhibitory to TLR-9. Compared to wild-type mice, hFIX levels were increased 2-fold in TLR-9 deficient mice following scAAV vector delivery and antibody formation against capsid was delayed. Additionally, in vitro studies with a TLR-9 reporter cell line showed significantly increased TLR-9 signaling for scAAV2 compared to ssAAV vectors, independent of the transgene/expression cassette. Neither vector activated the inflammasome. Further in vivo studies showed that the innate response to scAAV was, with the exception of TNF-a expression, Kupffer cell dependent, likely owing to the importance of these cells to sequester viral particles in the liver. Our results have several implications. Gene therapy applications based on administration of high-dose scAAV may be limited by immunotoxicities, which, however, can be prevented by inhibition of TLR-9 signaling. Of general importance, changing the genome configuration of a virus from single- to double-stranded DNA increased sensing by the endosomal receptor TLR-9, thereby enhancing innate immunity. Disclosures: Herzog: Genzyme Corp: Patents & Royalties.


2004 ◽  
Vol 200 (4) ◽  
pp. 527-533 ◽  
Author(s):  
Victoria Auerbuch ◽  
Dirk G. Brockstedt ◽  
Nicole Meyer-Morse ◽  
Mary O'Riordan ◽  
Daniel A. Portnoy

Listeria monocytogenes is a facultative intracellular pathogen that induces a cytosolic signaling cascade resulting in expression of interferon (IFN)-β. Although type I IFNs are critical in viral defense, their role in immunity to bacterial pathogens is much less clear. In this study, we addressed the role of type I IFNs by examining the infection of L. monocytogenes in BALB/c mice lacking the type I IFN receptor (IFN-α/βR−/−). During the first 24 h of infection in vivo, IFN-α/βR−/− and wild-type mice were similar in terms of L. monocytogenes survival. In addition, the intracellular fate of L. monocytogenes in macrophages cultured from IFN-α/βR−/− and wild-type mice was indistinguishable. However, by 72 h after inoculation in vivo, IFN-α/βR−/− mice were ∼1,000-fold more resistant to a high dose L. monocytogenes infection. Resistance was correlated with elevated levels of interleukin 12p70 in the blood and increased numbers of CD11b+ macrophages producing tumor necrosis factor α in the spleen of IFN-α/βR−/− mice. The results of this study suggest that L. monocytogenes might be exploiting an innate antiviral response to promote its pathogenesis.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1150-1150
Author(s):  
Ibrahim El Serafi ◽  
Manuchehr Abedi-Valugerdi ◽  
Seán Naughton ◽  
Maryam Saghafian ◽  
Jonas Mattsson ◽  
...  

Abstract Hematopoietic stem cell transplantation (HSCT) is a curative treatment for several malignant and non-malignant diseases. Busulphan (Bu) is an alkylating agent that is used in high doses as a part of the conditioning regime prior to HSCT. Busulphan is metabolized mainly in the liver by conjugation with glutathione (GSH) by glutathione transferases (GST), in particular, GSTA1. Busulphan interactions with drugs metabolized by hepatic enzymes other than GSH/GST have been reported. The aim of the present study was to investigate the role of other enzymes than GSH/GST in the busulphan metabolism including FMO3 and cytochrome P450 enzymes (CYPs). In our in vitro studies, human liver microsomes were incubated with busulphan first core metabolite, tetrahydrothiophene (THT). The incubation results showed a rapid disappearance of THT and gradual formation of the other metabolites. THT incubation with recombinant enzymes showed FMO3 to give the highest Initial THT disappearance rate (v0, 6.87 µmol/min/mL) and the highest intrinsic clearance(CLint, 0.26 µL/min/mg protein) followed by other CYPs. Comparing CYPs based on the initial THT disappearance rate (v0) per POR/CYP ratio, CYP2C8 had the highest rate for THT metabolism (5.03 nmol/min/(POR/CYP ratio) followed by CYPs 2C9, 2C19, 2E1 and 3A4. These results showed that THT is metabolized by microsomal enzymes and FMO3 is the main enzyme. For in vivo studies, we determined the kinetics of Bu in mice in the presence or absence of phenylthiourea (PTU), an inhibitor of FMO3. Moreover, the effect of THT accumulation on Bu metabolism was also determined in the same species. Treatment with PTU resulted in increase of Bu plasma concentrations as expressed as AUC. Furthermore, synchronized treatment of mice with THT and Bu also enhanced the plasma levels of Bu as compared to animals receiving Bu alone. After THT dosing, THT concentrations and AUC significantly (P < 0.05) increased after concurrent PTU injection. THT concentrations and AUC for mice treated with Bu and PTU also significantly (P < 0.05) increased compared to mice injected with Bu alone. To evaluate the role of FMO3 in the kinetics of Bu in the clinical settings, we investigated twelve patients undergoing HSCT and conditioned with busulphan / cyclophosphamide. A significant up-regulation (P < 0.05) of mRNA was found for FMO3 after Bu conditioning as confirmed using qRT-PCR. The up-regulation observed for FMO3 was similar to what was observed for GSTA1 (P < 0.05). To further confirm the involvement of FMO3 on in vivo Bu kinetics in humans, blood samples were drawn routinely from a patient treated with high dose busulphan and concomitant administration of voriconazole. Voriconazole is an antimycotic drug is wieldy used in hematology and HSCT and is known to be metabolized via FMO3. High busulphan levels that were not relevant to the administered dose were detected in this patient. Measuring THT in the samples showed that THT levels detectable with high accumulation and slow oxidation rate. In conclusion, our results showed that FMO3 and, to a lesser extent, CYPs are involved in busulphan metabolism through metabolism of its first core metabolite, THT. FMO3 is up regulated during Bu conditioning. FMO3 inhibition affects Bu kinetics. Our findings may offer valuable explanations into several drug interactions involving busulphan during HSCT conditioning therapy and thus, lower treatment related toxicity reported in HSCT. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 11 (15) ◽  
pp. 6865
Author(s):  
Eun Seon Lee ◽  
Joung Hun Park ◽  
Seong Dong Wi ◽  
Ho Byoung Chae ◽  
Seol Ki Paeng ◽  
...  

The thioredoxin-h (Trx-h) family of Arabidopsis thaliana comprises cytosolic disulfide reductases. However, the physiological function of Trx-h2, which contains an additional 19 amino acids at its N-terminus, remains unclear. In this study, we investigated the molecular function of Trx-h2 both in vitro and in vivo and found that Arabidopsis Trx-h2 overexpression (Trx-h2OE) lines showed significantly longer roots than wild-type plants under cold stress. Therefore, we further investigated the role of Trx-h2 under cold stress. Our results revealed that Trx-h2 functions as an RNA chaperone by melting misfolded and non-functional RNAs, and by facilitating their correct folding into active forms with native conformation. We showed that Trx-h2 binds to and efficiently melts nucleic acids (ssDNA, dsDNA, and RNA), and facilitates the export of mRNAs from the nucleus to the cytoplasm under cold stress. Moreover, overexpression of Trx-h2 increased the survival rate of the cold-sensitive E. coli BX04 cells under low temperature. Thus, our data show that Trx-h2 performs function as an RNA chaperone under cold stress, thus increasing plant cold tolerance.


Author(s):  
Wanhai Qin ◽  
Xanthe Brands ◽  
Cornelis Veer ◽  
Alex F. Vos ◽  
Brendon P. Scicluna ◽  
...  

1996 ◽  
Vol 184 (2) ◽  
pp. 485-492 ◽  
Author(s):  
M A Alexander-Miller ◽  
G R Leggatt ◽  
A Sarin ◽  
J A Berzofsky

Experimental data suggest that negative selection of thymocytes can occur as a result of supraoptimal antigenic stimulation. It is unknown, however, whether such mechanisms are at work in mature CD8+ T lymphocytes. Here, we show that CD8+ effector cytotoxic T lymphocytes (CTL) are susceptible to proliferative inhibition by high dose peptide antigen, leading to apoptotic death mediated by TNF-alpha release. Such inhibition is not reflected in the cytolytic potential of the CTL, since concentrations of antigen that are inhibitory for proliferation promote efficient lysis of target cells. Thus, although CTL have committed to the apoptotic pathway, the kinetics of this process are such that CTL function can occur before death of the CTL. The concentration of antigen required for inhibition is a function of the CTL avidity, in that concentrations of antigen capable of completely inhibiting high avidity CTL maximally stimulate low avidity CTL. Importantly, the inhibition can be detected in both activated and resting CTL. Blocking studies demonstrate that the CD8 molecule contributes significantly to the inhibitory signal as the addition of anti-CD8 antibody restores the proliferative response. Thus, our data support the model that mature CD8+ CTL can accommodate an activation signal of restricted intensity, which, if surpassed, results in deletion of that cell.


2008 ◽  
Vol 200 (1) ◽  
pp. 23-33 ◽  
Author(s):  
S Schmidt ◽  
A Hommel ◽  
V Gawlik ◽  
R Augustin ◽  
N Junicke ◽  
...  

Deletion of glucose transporter geneSlc2a3(GLUT3) has previously been reported to result in embryonic lethality. Here, we define the exact time point of growth arrest and subsequent death of the embryo.Slc2a3−/−morulae and blastocysts developed normally, implantedin vivo, and formed egg-cylinder-stage embryos that appeared normal until day 6.0. At day 6.5, apoptosis was detected in the ectodermal cells ofSlc2a3−/−embryos resulting in severe disorganization and growth retardation at day 7.5 and complete loss of embryos at day 12.5. GLUT3 was detected in placental cone, in the visceral ectoderm and in the mesoderm of 7.5-day-old wild-type embryos. Our data indicate that GLUT3 is essential for the development of early post-implanted embryos.


Sign in / Sign up

Export Citation Format

Share Document