scholarly journals Cross Kingdom Immunity: The Role of Immune Receptors and Downstream Signaling in Animal and Plant Cell Death

2021 ◽  
Vol 11 ◽  
Author(s):  
Thibault Roudaire ◽  
Marie-Claire Héloir ◽  
David Wendehenne ◽  
Aymeric Zadoroznyj ◽  
Laurence Dubrez ◽  
...  

Both plants and animals are endowed with sophisticated innate immune systems to combat microbial attack. In these multicellular eukaryotes, innate immunity implies the presence of cell surface receptors and intracellular receptors able to detect danger signal referred as damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs). Membrane-associated pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs), C-type lectin receptors (CLRs), receptor-like kinases (RLKs), and receptor-like proteins (RLPs) are employed by these organisms for sensing different invasion patterns before triggering antimicrobial defenses that can be associated with a form of regulated cell death. Intracellularly, animals nucleotide-binding and oligomerization domain (NOD)-like receptors or plants nucleotide-binding domain (NBD)-containing leucine rich repeats (NLRs) immune receptors likely detect effectors injected into the host cell by the pathogen to hijack the immune signaling cascade. Interestingly, during the co-evolution between the hosts and their invaders, key cross-kingdom cell death-signaling macromolecular NLR-complexes have been selected, such as the inflammasome in mammals and the recently discovered resistosome in plants. In both cases, a regulated cell death located at the site of infection constitutes a very effective mean for blocking the pathogen spread and protecting the whole organism from invasion. This review aims to describe the immune mechanisms in animals and plants, mainly focusing on cell death signaling pathways, in order to highlight recent advances that could be used on one side or the other to identify the missing signaling elements between the perception of the invasion pattern by immune receptors, the induction of defenses or the transmission of danger signals to other cells. Although knowledge of plant immunity is less advanced, these organisms have certain advantages allowing easier identification of signaling events, regulators and executors of cell death, which could then be exploited directly for crop protection purposes or by analogy for medical research.

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 930
Author(s):  
Rianne D. W. Vaes ◽  
Lizza E. L. Hendriks ◽  
Marc Vooijs ◽  
Dirk De Ruysscher

Radiation therapy (RT) can induce an immunogenic variant of regulated cell death that can initiate clinically relevant tumor-targeting immune responses. Immunogenic cell death (ICD) is accompanied by the exposure and release of damage-associated molecular patterns (DAMPs), chemokine release, and stimulation of type I interferon (IFN-I) responses. In recent years, intensive research has unraveled major mechanistic aspects of RT-induced ICD and has resulted in the identification of immunogenic factors that are released by irradiated tumor cells. However, so far, only a limited number of studies have searched for potential biomarkers that can be used to predict if irradiated tumor cells undergo ICD that can elicit an effective immunogenic anti-tumor response. In this article, we summarize the available literature on potential biomarkers of RT-induced ICD that have been evaluated in cancer patients. Additionally, we discuss the clinical relevance of these findings and important aspects that should be considered in future studies.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 982
Author(s):  
Samantha Sarcognato ◽  
Iris E. M. de Jong ◽  
Luca Fabris ◽  
Massimiliano Cadamuro ◽  
Maria Guido

Necroptosis is a type of regulated cell death that is increasingly being recognized as a relevant pathway in different pathological conditions. Necroptosis can occur in response to multiple stimuli, is triggered by the activation of death receptors, and is regulated by receptor-interacting protein kinases 1 and 3 and mixed-lineage kinase domain-like, which form a regulatory complex called the necrosome. Accumulating evidence suggests that necroptosis plays a complex role in cancer, which is likely context-dependent and can vary among different types of neoplasms. Necroptosis serves as an alternative mode of programmed cell death overcoming apoptosis and, as a pro-inflammatory death type, it may inhibit tumor progression by releasing damage-associated molecular patterns to elicit robust cross-priming of anti-tumor CD8+ T cells. The development of therapeutic strategies triggering necroptosis shows great potential for anti-cancer therapy. In this review, we summarize the current knowledge on necroptosis and its role in liver biliary neoplasms, underlying the potential of targeting necroptosis components for cancer treatment.


2014 ◽  
Vol 26 (7) ◽  
pp. 3115-3131 ◽  
Author(s):  
Kira M. Veley ◽  
Grigory Maksaev ◽  
Elizabeth M. Frick ◽  
Emma January ◽  
Sarah C. Kloepper ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 990
Author(s):  
Jean-Marie Ravel ◽  
L. Cristobal Monraz Gomez ◽  
Nicolas Sompairac ◽  
Laurence Calzone ◽  
Boris Zhivotovsky ◽  
...  

The processes leading to, or avoiding cell death are widely studied, because of their frequent perturbation in various diseases. Cell death occurs in three highly interconnected steps: Initiation, signaling and execution. We used a systems biology approach to gather information about all known modes of regulated cell death (RCD). Based on the experimental data retrieved from literature by manual curation, we graphically depicted the biological processes involved in RCD in the form of a seamless comprehensive signaling network map. The molecular mechanisms of each RCD mode are represented in detail. The RCD network map is divided into 26 functional modules that can be visualized contextually in the whole seamless network, as well as in individual diagrams. The resource is freely available and accessible via several web platforms for map navigation, data integration, and analysis. The RCD network map was employed for interpreting the functional differences in cell death regulation between Alzheimer’s disease and non-small cell lung cancer based on gene expression data that allowed emphasizing the molecular mechanisms underlying the inverse comorbidity between the two pathologies. In addition, the map was used for the analysis of genomic and transcriptomic data from ovarian cancer patients that provided RCD map-based signatures of four distinct tumor subtypes and highlighted the difference in regulations of cell death molecular mechanisms.


2019 ◽  
Vol 31 (10) ◽  
pp. 2430-2455 ◽  
Author(s):  
Dmitry Lapin ◽  
Viera Kovacova ◽  
Xinhua Sun ◽  
Joram A. Dongus ◽  
Deepak Bhandari ◽  
...  

2016 ◽  
Vol 113 (36) ◽  
pp. 10204-10209 ◽  
Author(s):  
Stella Cesari ◽  
John Moore ◽  
Chunhong Chen ◽  
Daryl Webb ◽  
Sambasivam Periyannan ◽  
...  

Plants possess intracellular immune receptors designated “nucleotide-binding domain and leucine-rich repeat” (NLR) proteins that translate pathogen-specific recognition into disease-resistance signaling. The wheat immune receptors Sr33 and Sr50 belong to the class of coiled-coil (CC) NLRs. They confer resistance against a broad spectrum of field isolates of Puccinia graminis f. sp. tritici, including the Ug99 lineage, and are homologs of the barley powdery mildew-resistance protein MLA10. Here, we show that, similarly to MLA10, the Sr33 and Sr50 CC domains are sufficient to induce cell death in Nicotiana benthamiana. Autoactive CC domains and full-length Sr33 and Sr50 proteins self-associate in planta. In contrast, truncated CC domains equivalent in size to an MLA10 fragment for which a crystal structure was previously determined fail to induce cell death and do not self-associate. Mutations in the truncated region also abolish self-association and cell-death signaling. Analysis of Sr33 and Sr50 CC domains fused to YFP and either nuclear localization or nuclear export signals in N. benthamiana showed that cell-death induction occurs in the cytosol. In stable transgenic wheat plants, full-length Sr33 proteins targeted to the cytosol provided rust resistance, whereas nuclear-targeted Sr33 was not functional. These data are consistent with CC-mediated induction of both cell-death signaling and stem rust resistance in the cytosolic compartment, whereas previous research had suggested that MLA10-mediated cell-death and disease resistance signaling occur independently, in the cytosol and nucleus, respectively.


2021 ◽  
pp. 1-16
Author(s):  
Chandramani Pathak ◽  
Foram U. Vaidya ◽  
Bhargav N. Waghela ◽  
Abu Sufiyan Chhipa ◽  
Budhi Sagar Tiwari ◽  
...  

2018 ◽  
Vol 38 (01) ◽  
pp. 073-086 ◽  
Author(s):  
Lily Dara

AbstractThe receptor interacting serine/threonine kinase1 and 3 (RIPK1, RIPK3) are regulators of cell death and survival. RIPK1 kinase activity is required for necroptosis and apoptosis, while its scaffolding function is necessary for survival. Although both proteins can mediate apoptosis, RIPK1 and RIPK3 are most well-known for their role in the execution of necroptosis via the mixed lineage domain like pseudokinase. Necroptosis is a caspase-independent regulated cell death program which was first described in cultured cells with unknown physiologic relevance in the liver. Many recent reports have suggested that RIPK1 and/or RIPK3 participate in liver disease pathogenesis and cell death. Notably, both proteins have been shown to mediate inflammation independent of cell death. Whether necroptosis occurs in hepatocytes, and how it is executed in the presence of an intact caspase machinery is controversial. In spite of this controversy, it is evident that RIPK1 and RIPK3 participate in many experimental liver disease models. Therefore, in addition to cell death signaling, their necroptosis-independent role warrants further examination.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Chenggang Wang ◽  
Mingqi Zhou ◽  
Xudong Zhang ◽  
Jin Yao ◽  
Yanping Zhang ◽  
...  

Nicotinamide adenine dinucleotide (NAD+) participates in intracellular and extracellular signaling events unrelated to metabolism. In animals, purinergic receptors are required for extracellular NAD+ (eNAD+) to evoke biological responses, indicating that eNAD+ may be sensed by cell-surface receptors. However, the identity of eNAD+-binding receptors still remains elusive. Here, we identify a lectin receptor kinase (LecRK), LecRK-I.8, as a potential eNAD+ receptor in Arabidopsis. The extracellular lectin domain of LecRK-I.8 binds NAD+ with a dissociation constant of 436.5 ± 104.8 nM, although much higher concentrations are needed to trigger in vivo responses. Mutations in LecRK-I.8 inhibit NAD+-induced immune responses, whereas overexpression of LecRK-I.8 enhances the Arabidopsis response to NAD+. Furthermore, LecRK-I.8 is required for basal resistance against bacterial pathogens, substantiating a role for eNAD+ in plant immunity. Our results demonstrate that lectin receptors can potentially function as eNAD+-binding receptors and provide direct evidence for eNAD+ being an endogenous signaling molecule in plants.


Sign in / Sign up

Export Citation Format

Share Document