scholarly journals The Receptor Interacting Protein Kinases in the Liver

2018 ◽  
Vol 38 (01) ◽  
pp. 073-086 ◽  
Author(s):  
Lily Dara

AbstractThe receptor interacting serine/threonine kinase1 and 3 (RIPK1, RIPK3) are regulators of cell death and survival. RIPK1 kinase activity is required for necroptosis and apoptosis, while its scaffolding function is necessary for survival. Although both proteins can mediate apoptosis, RIPK1 and RIPK3 are most well-known for their role in the execution of necroptosis via the mixed lineage domain like pseudokinase. Necroptosis is a caspase-independent regulated cell death program which was first described in cultured cells with unknown physiologic relevance in the liver. Many recent reports have suggested that RIPK1 and/or RIPK3 participate in liver disease pathogenesis and cell death. Notably, both proteins have been shown to mediate inflammation independent of cell death. Whether necroptosis occurs in hepatocytes, and how it is executed in the presence of an intact caspase machinery is controversial. In spite of this controversy, it is evident that RIPK1 and RIPK3 participate in many experimental liver disease models. Therefore, in addition to cell death signaling, their necroptosis-independent role warrants further examination.

Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 982
Author(s):  
Samantha Sarcognato ◽  
Iris E. M. de Jong ◽  
Luca Fabris ◽  
Massimiliano Cadamuro ◽  
Maria Guido

Necroptosis is a type of regulated cell death that is increasingly being recognized as a relevant pathway in different pathological conditions. Necroptosis can occur in response to multiple stimuli, is triggered by the activation of death receptors, and is regulated by receptor-interacting protein kinases 1 and 3 and mixed-lineage kinase domain-like, which form a regulatory complex called the necrosome. Accumulating evidence suggests that necroptosis plays a complex role in cancer, which is likely context-dependent and can vary among different types of neoplasms. Necroptosis serves as an alternative mode of programmed cell death overcoming apoptosis and, as a pro-inflammatory death type, it may inhibit tumor progression by releasing damage-associated molecular patterns to elicit robust cross-priming of anti-tumor CD8+ T cells. The development of therapeutic strategies triggering necroptosis shows great potential for anti-cancer therapy. In this review, we summarize the current knowledge on necroptosis and its role in liver biliary neoplasms, underlying the potential of targeting necroptosis components for cancer treatment.


2014 ◽  
Vol 26 (7) ◽  
pp. 3115-3131 ◽  
Author(s):  
Kira M. Veley ◽  
Grigory Maksaev ◽  
Elizabeth M. Frick ◽  
Emma January ◽  
Sarah C. Kloepper ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 990
Author(s):  
Jean-Marie Ravel ◽  
L. Cristobal Monraz Gomez ◽  
Nicolas Sompairac ◽  
Laurence Calzone ◽  
Boris Zhivotovsky ◽  
...  

The processes leading to, or avoiding cell death are widely studied, because of their frequent perturbation in various diseases. Cell death occurs in three highly interconnected steps: Initiation, signaling and execution. We used a systems biology approach to gather information about all known modes of regulated cell death (RCD). Based on the experimental data retrieved from literature by manual curation, we graphically depicted the biological processes involved in RCD in the form of a seamless comprehensive signaling network map. The molecular mechanisms of each RCD mode are represented in detail. The RCD network map is divided into 26 functional modules that can be visualized contextually in the whole seamless network, as well as in individual diagrams. The resource is freely available and accessible via several web platforms for map navigation, data integration, and analysis. The RCD network map was employed for interpreting the functional differences in cell death regulation between Alzheimer’s disease and non-small cell lung cancer based on gene expression data that allowed emphasizing the molecular mechanisms underlying the inverse comorbidity between the two pathologies. In addition, the map was used for the analysis of genomic and transcriptomic data from ovarian cancer patients that provided RCD map-based signatures of four distinct tumor subtypes and highlighted the difference in regulations of cell death molecular mechanisms.


2019 ◽  
Vol 164 ◽  
pp. 157-169 ◽  
Author(s):  
Elena T. Iakimova ◽  
Zhenia P. Yordanova ◽  
Simona M. Cristescu ◽  
Frans J.M. Harren ◽  
Ernst J. Woltering

2019 ◽  
Vol 10 (11) ◽  
Author(s):  
Pedro A. Dionísio ◽  
Sara R. Oliveira ◽  
Maria M. Gaspar ◽  
Maria J. Gama ◽  
Margarida Castro-Caldas ◽  
...  

Abstract Parkinson’s disease (PD) is driven by dopaminergic neurodegeneration in the substantia nigra pars compacta (SN) and striatum. Although apoptosis is considered the main neurodegenerative mechanism, other cell death pathways may be involved. In this regard, necroptosis is a regulated form of cell death dependent on receptor interacting protein 3 (RIP3), a protein also implicated in apoptosis and inflammation independently of its pro-necroptotic activity. Here, we explored the role of RIP3 genetic deletion in in vivo and in vitro PD models. Firstly, wild-type (Wt) and RIP3 knockout (RIP3ko) mice were injected intraperitoneally with MPTP (40 mg/kg, i.p.), and sacrificed after either 6 or 30 days. RIP3ko protected from dopaminergic neurodegeneration in the SN of MPTP-injected mice, but this effect was independent of necroptosis. In keeping with this, necrostatin-1s (10 mg/kg/day, i.p.) did not afford full neuroprotection. Moreover, MPTP led to DNA fragmentation, caspase-3 activation, lipid peroxidation and BAX expression in Wt mice, in the absence of caspase-8 cleavage, suggesting intrinsic apoptosis. This was mimicked in primary cortical neuronal cultures exposed to the active MPTP metabolite. RIP3 deficiency in cultured cells and in mouse brain abrogated all phenotypes. Curiously, astrogliosis was increased in the striatum of MPTP-injected Wt mice and further exacerbated in RIP3ko mice. This was accompanied by absence of microgliosis and reposition of glial cell line-derived neurotrophic factor (GDNF) levels in the striata of MPTP-injected RIP3ko mice when compared to MPTP-injected Wt mice, which in turn showed a massive GDNF decrease. RIP3ko primary mixed glial cultures also presented decreased expression of inflammation-related genes upon inflammatory stimulation. These findings hint at possible undescribed non-necroptotic roles for RIP3 in inflammation and MPTP-driven cell death, which can contribute to PD progression.


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 411
Author(s):  
Rona Harari-Steinfeld ◽  
Maytal Gefen ◽  
Alina Simerzin ◽  
Elina Zorde-Khvalevsky ◽  
Mila Rivkin ◽  
...  

The H19-derived microRNA-675 (miR-675) has been implicated as both tumor promoter and tumor suppressor and also plays a role in liver inflammation. We found that miR-675 promotes cell death in human hepatocellular carcinoma (HCC) cell lines. We show that Fas-associated protein with death domain (FADD), a mediator of apoptotic cell death signaling, is downregulated by miR-675 and a negative correlation exists between miR-675 and FADD expression in mouse models of HCC (p = 0.014) as well as in human samples (p = 0.017). We demonstrate in a mouse model of liver inflammation that overexpression of miR-675 promotes necroptosis, which can be inhibited by the necroptosis-specific inhibitor Nec-1/Nec-1s. miR-675 induces the level of both p-MLKL (Mixed Lineage Kinase Domain-Like Pseudokinase) and RIP3 (receptor-interacting protein 3), which are key signaling molecules in necroptosis, and enhances MLKL binding to RIP3. miR-675 also inhibits the levels of cleaved caspases 8 and 3, suggesting that miR-675 induces a shift from apoptosis to a necroptotic cellular pathway. In conclusion, downregulation of FADD by miR-675 promotes liver necroptosis in response to inflammatory signals. We propose that this regulation cascade can stimulate and enhance the inflammatory response in the liver, making miR-675 an important regulator in liver inflammation and potentially also in HCC.


2021 ◽  
Vol 4 (6) ◽  
pp. e202000956
Author(s):  
Snehlata Kumari ◽  
Trieu-My Van ◽  
Daniela Preukschat ◽  
Hannah Schuenke ◽  
Marijana Basic ◽  
...  

Tumor necrosis factor receptor 1 (TNFR1) activates NF-κB–dependent pro-inflammatory gene expression, but also induces cell death by triggering apoptosis and necroptosis. Inhibition of inhibitor of NF-κB kinase (IKK)/NF-κB signaling in keratinocytes paradoxically unleashed spontaneous TNFR1-mediated skin inflammation in mice, but the underlying mechanisms remain poorly understood. Here, we show that TNFR1 causes skin inflammation in mice with epidermis-specific knockout of IKK2 by inducing receptor interacting protein kinase 1 (RIPK1)–dependent necroptosis, and to a lesser extent also apoptosis, of keratinocytes. Combined epidermis-specific ablation of the NF-κB subunits RelA and c-Rel also caused skin inflammation by inducing TNFR1-mediated keratinocyte necroptosis. Contrary to the currently established model that inhibition of NF-κB–dependent gene transcription causes RIPK1-independent cell death, keratinocyte necroptosis, and skin inflammation in mice with epidermis-specific RelA and c-Rel deficiency also depended on RIPK1 kinase activity. These results advance our understanding of the mechanisms regulating TNFR1-induced cell death and identify RIPK1-mediated necroptosis as a potent driver of skin inflammation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lingling Wang ◽  
Ling Zhou ◽  
Yuhao Zhou ◽  
Lu Liu ◽  
Weiling Jiang ◽  
...  

In the past decades, apoptosis has been the most well-studied regulated cell death (RCD) that has essential functions in tissue homeostasis throughout life. However, a novel form of RCD called necroptosis, which requires receptor-interacting protein kinase-3 (RIPK3) and mixed-lineage kinase domain-like pseudokinase (MLKL), has recently been receiving increasing scientific attention. The phosphorylation of RIPK3 enables the recruitment and phosphorylation of MLKL, which oligomerizes and translocates to the plasma membranes, ultimately leading to plasma membrane rupture and cell death. Although apoptosis elicits no inflammatory responses, necroptosis triggers inflammation or causes an innate immune response to protect the body through the release of damage-associated molecular patterns (DAMPs). Increasing evidence now suggests that necroptosis is implicated in the pathogenesis of several human diseases such as systemic inflammation, respiratory diseases, cardiovascular diseases, neurodegenerative diseases, neurological diseases, and cancer. This review summarizes the emerging insights of necroptosis and its contribution toward the pathogenesis of lung diseases.


Sign in / Sign up

Export Citation Format

Share Document