scholarly journals The Role of Nucleases and Nucleic Acid Editing Enzymes in the Regulation of Self-Nucleic Acid Sensing

2021 ◽  
Vol 12 ◽  
Author(s):  
Pauline Santa ◽  
Anne Garreau ◽  
Lee Serpas ◽  
Amandine Ferriere ◽  
Patrick Blanco ◽  
...  

Detection of microbial nucleic acids by the innate immune system is mediated by numerous intracellular nucleic acids sensors. Upon the detection of nucleic acids these sensors induce the production of inflammatory cytokines, and thus play a crucial role in the activation of anti-microbial immunity. In addition to microbial genetic material, nucleic acid sensors can also recognize self-nucleic acids exposed extracellularly during turn-over of cells, inefficient efferocytosis, or intracellularly upon mislocalization. Safeguard mechanisms have evolved to dispose of such self-nucleic acids to impede the development of autoinflammatory and autoimmune responses. These safeguard mechanisms involve nucleases that are either specific to DNA (DNases) or RNA (RNases) as well as nucleic acid editing enzymes, whose biochemical properties, expression profiles, functions and mechanisms of action will be detailed in this review. Fully elucidating the role of these enzymes in degrading and/or processing of self-nucleic acids to thwart their immunostimulatory potential is of utmost importance to develop novel therapeutic strategies for patients affected by inflammatory and autoimmune diseases.

2020 ◽  
Vol 16 (1) ◽  
pp. 18-27
Author(s):  
Manzoor M. Khan

Interstitial lung disease, a term for a group of disorders, causes lung fibrosis, is mostly refractory to treatments and has a high death rate. After diagnosis the survival is up to 3 years but in some cases the patients live much longer. It involves a heterogenous group of lung diseases that exhibit progressive and irreversible destruction of the lung due to the formation of scars. This results in lung malfunction, disruption of gas exchange, and eventual death because of respiratory failure. The etiology of lung fibrosis is mostly unknown with a few exceptions. The major characteristics of the disease are comprised of injury of epithelial type II cells, increased apoptosis, chronic inflammation, monocytic and lymphocytic infiltration, accumulation of myofibroblasts, and inability to repair damaged tissue properly. These events result in abnormal collagen deposition and scarring. The inflammation process is mild, and the disease is primarily fibrotic driven. Immunosuppressants do not treat the disease but the evidence is evolving that both innate and acquired immune responses a well as the cytokines contribute to at least early progression of the disease. Furthermore, mediators of inflammation including cytokines are involved throughout the process of lung fibrosis. The diverse clinical outcome of the disease is due to different pattern of inflammatory markers. Nonetheless, the development of novel therapeutic strategies requires better understanding of the role of the immune response. This review highlights the role of the immune response in interstitial lung disease and considers the therapeutic strategies based on these observations. For this review several literature data sources were used to assess the role of the immune response in interstitial lung disease and to evaluate the possible therapeutic strategies for the disease.


2020 ◽  
Vol 11 ◽  
Author(s):  
Lihui Chen ◽  
Jie Li ◽  
Wu Zhu ◽  
Yehong Kuang ◽  
Tao Liu ◽  
...  

Psoriasis affects the health of myriad populations around the world. The pathogenesis is multifactorial, and the exact driving factor remains unclear. This condition arises from the interaction between hyperproliferative keratinocytes and infiltrating immune cells, with poor prognosis and high recurrence. Better clinical treatments remain to be explored. There is much evidence that alterations in the skin and intestinal microbiome play an important role in the pathogenesis of psoriasis, and restoration of the microbiome is a promising preventive and therapeutic strategy for psoriasis. Herein, we have reviewed recent studies on the psoriasis-related microbiome in an attempt to confidently identify the “core” microbiome of psoriasis patients, understand the role of microbiome in the pathogenesis of psoriasis, and explore new therapeutic strategies for psoriasis through microbial intervention.


2018 ◽  
Vol 72 (1) ◽  
pp. 447-478 ◽  
Author(s):  
Xiaojun Tan ◽  
Lijun Sun ◽  
Jueqi Chen ◽  
Zhijian J. Chen

Microbial infections are recognized by the innate immune system through germline-encoded pattern recognition receptors (PRRs). As most microbial pathogens contain DNA and/or RNA during their life cycle, nucleic acid sensing has evolved as an essential strategy for host innate immune defense. Pathogen-derived nucleic acids with distinct features are recognized by specific host PRRs localized in endolysosomes and the cytosol. Activation of these PRRs triggers signaling cascades that culminate in the production of type I interferons and proinflammatory cytokines, leading to induction of an antimicrobial state, activation of adaptive immunity, and eventual clearance of the infection. Here, we review recent progress in innate immune recognition of nucleic acids upon microbial infection, including pathways involving endosomal Toll-like receptors, cytosolic RNA sensors, and cytosolic DNA sensors. We also discuss the mechanisms by which infectious microbes counteract host nucleic acid sensing to evade immune surveillance.


2018 ◽  
Vol 52 ◽  
pp. S68-S70 ◽  
Author(s):  
Letizia Mazzini ◽  
Luca Mogna ◽  
Fabiola De Marchi ◽  
Angela Amoruso ◽  
Marco Pane ◽  
...  

2020 ◽  
Vol 295 (24) ◽  
pp. 8325-8330 ◽  
Author(s):  
Sannula Kesavardhana ◽  
R. K. Subbarao Malireddi ◽  
Amanda R. Burton ◽  
Shaina N. Porter ◽  
Peter Vogel ◽  
...  

Z-DNA-binding protein 1 (ZBP1) is an innate immune sensor of nucleic acids that regulates host defense responses and development. ZBP1 activation triggers inflammation and pyroptosis, necroptosis, and apoptosis (PANoptosis) by activating receptor-interacting Ser/Thr kinase 3 (RIPK3), caspase-8, and the NLRP3 inflammasome. ZBP1 is unique among innate immune sensors because of its N-terminal Zα1 and Zα2 domains, which bind to nucleic acids in the Z-conformation. However, the specific role of these Zα domains in orchestrating ZBP1 activation and subsequent inflammation and cell death is not clear. Here we generated Zbp1ΔZα2/ΔZα2 mice that express ZBP1 lacking the Zα2 domain and demonstrate that this domain is critical for influenza A virus–induced PANoptosis and underlies perinatal lethality in mice in which the RIP homotypic interaction motif domain of RIPK1 has been mutated (Ripk1mRHIM/mRHIM). Deletion of the Zα2 domain in ZBP1 abolished influenza A virus–induced PANoptosis and NLRP3 inflammasome activation. Furthermore, deletion of the Zα2 domain of ZBP1 was sufficient to rescue Ripk1mRHIM/mRHIM mice from perinatal lethality caused by ZBP1-driven cell death and inflammation. Our findings identify the essential role of the Zα2 domain of ZBP1 in several physiological functions and establish a link between Z-RNA sensing via the Zα2 domain and promotion of influenza-induced PANoptosis and perinatal lethality.


2019 ◽  
Vol 5 (6) ◽  
pp. eaaw5075 ◽  
Author(s):  
Guangchang Pei ◽  
Ying Yao ◽  
Qian Yang ◽  
Meng Wang ◽  
Yuxi Wang ◽  
...  

Lymphangiogenesis is associated with chronic kidney disease (CKD) and occurs following kidney transplant. Here, we demonstrate that expanding lymphatic vessels (LVs) in kidneys and corresponding renal draining lymph nodes (RDLNs) play critical roles in promoting intrarenal inflammation and fibrosis following renal injury. Our studies show that lymphangiogenesis in the kidney and RDLN is driven by proliferation of preexisting lymphatic endothelium expressing the essential C-C chemokine ligand 21 (CCL21). New injury-induced LVs also express CCL21, stimulating recruitment of more CCR7+dendritic cells (DCs) and lymphocytes into both RDLNs and spleen, resulting in a systemic lymphocyte expansion. Injury-induced intrarenal inflammation and fibrosis could be attenuated by blocking the recruitment of CCR7+cells into RDLN and spleen or inhibiting lymphangiogenesis. Elucidating the role of lymphangiogenesis in promoting intrarenal inflammation and fibrosis provides a key insight that can facilitate the development of novel therapeutic strategies to prevent progression of CKD-associated fibrosis.


2002 ◽  
Vol 35 (4) ◽  
pp. 431-478 ◽  
Author(s):  
Emmanuelle Delagoutte ◽  
Peter H. von Hippel

1. Mechanisms of nucleic acid (NA) unwinding by helicases 4322. Helicases may take advantage of ‘breathing’ fluctuations in dsNAs 4342.1 Stability and dynamics of dsNAs 4342.2 dsNAs ‘breathe’ in isolation 4352.3 Thermodynamics of terminal base pairs of dsNA 4382.4 Thermal fluctuations may be responsible for sequential base-pair opening at replication forks 4392.5 Helicases may capture single base-pair opening events sequentially 4403. Biochemical properties of helicases 4433.1 Binding of NAs 4433.2 Binding and hydrolysis of NTP 4453.3 Coordination between NA binding and NTP binding and hydrolysis activities 4464. Helicase structures and mechanistic consequences 4474.1 Amino-acid sequence analysis reveals conserved motifs that constitute the NTP-binding pocket and a portion of the NA-binding site 4474.2 Organization of hepatitis virus C NS3 RNA helicase 4494.2.1 Biochemical properties of HCV NS3 4494.2.2 Crystal structures of HCV NS3 helicase 4504.2.2.1 The apoprotein 4504.2.2.2 The protein–dU8 complex 4504.2.3 A possible unwinding mechanism 4524.2.4 What is the functional oligomeric state of HCV NS3? 4524.3 Organization of the PcrA helicase 4534.3.1 The apoenzyme and ADP–PcrA complex 4544.3.2 The protein–DNA–sulfate complex 4564.3.3 The PcrA–DNA–ADPNP complex 4564.3.4 A closer look at the NTP-binding site in the crystal structure of PcrA–ADPNP–DNA 4574.3.5 Communication between domains A and B 4574.3.6 How might ssDNA stimulate the ATPase activity of PcrA? 4574.3.7 A possible helicase translocation mechanism 4584.3.8 A possible unwinding mechanism 4584.4 Organization of the Rep helicase 4594.4.1 Biochemical properties 4594.4.2 Crystal structure of Rep bound to ssDNA 4624.5 Organization of the RecG helicase 4624.6 Hexameric helicases 4664.6.1 Insights from crystal structures of hexameric helicases 4674.6.2 Possible translocation and unwinding mechanisms 4685. Conclusions 4696. Acknowledgments 4727. References 472Helicases are proteins that harness the chemical free energy of ATP hydrolysis to catalyze the unwinding of double-stranded nucleic acids. These enzymes have been much studied in isolation, and here we review what is known about the mechanisms of the unwinding process. We begin by considering the thermally driven ‘breathing’ of double-stranded nucleic acids by themselves, in order to ask whether helicases might take advantage of some of these breathing modes. We next provide a brief summary of helicase mechanisms that have been elucidated by biochemical, thermodynamic, and kinetic studies, and then review in detail recent structural studies of helicases in isolation, in order to correlate structural findings with biophysical and biochemical results. We conclude that there are certainly common mechanistic themes for helicase function, but that different helicases have devised solutions to the nucleic acid unwinding problem that differ in structural detail. In Part II of this review (to be published in the next issue of this journal) we consider how these mechanisms are further modified to reflect the functional coupling of these proteins into macromolecular machines, and discuss the role of helicases in several central biological processes to illustrate how this coupling actually works in the various processes of gene expression.


Diseases ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 15 ◽  
Author(s):  
Janani Ramesh ◽  
Larance Ronsard ◽  
Anthony Gao ◽  
Bhuvarahamurthy Venugopal

Autophagy is a regular and substantial “clear-out process” that occurs within the cell and that gets rid of debris that accumulates in membrane-enclosed vacuoles by using enzyme-rich lysosomes, which are filled with acids that degrade the contents of the vacuoles. This machinery is well-connected with many prevalent diseases, including cancer, HIV, and Parkinson’s disease. Considering that autophagy is well-known for its significant connections with a number of well-known fatal diseases, a thorough knowledge of the current findings in the field is essential in developing therapies to control the progression rate of diseases. Thus, this review summarizes the critical events comprising autophagy in the cellular system and the significance of its key molecules in manifesting this pathway in various diseases for down- or upregulation. We collectively reviewed the role of autophagy in various diseases, mainly neurodegenerative diseases, cancer, inflammatory diseases, and renal disorders. Here, some collective reports on autophagy showed that this process might serve as a dual performer: either protector or contributor to certain diseases. The aim of this review is to help researchers to understand the role of autophagy-regulating genes encoding functional open reading frames (ORFs) and its connection with diseases, which will eventually drive better understanding of both the progression and suppression of different diseases at various stages. This review also focuses on certain novel therapeutic strategies which have been published in the recent years based on targeting autophagy key proteins and its interconnecting signaling cascades.


Sign in / Sign up

Export Citation Format

Share Document