scholarly journals Transcriptome Signature of Vγ9Vδ2 T Cells Treated With Phosphoantigens and Notch Inhibitor Reveals Interplay Between TCR and Notch Signaling Pathways

2021 ◽  
Vol 12 ◽  
Author(s):  
Ayush Madhok ◽  
Sajad Ahmad Bhat ◽  
Chinna Susan Philip ◽  
Shalini Kashipathi Sureshbabu ◽  
Shubhada Chiplunkar ◽  
...  

Gamma delta (γδ) T cells, especially the Vγ9Vδ2 subtype, have been implicated in cancer therapy and thus have earned the spotlight in the past decade. Although one of the most important properties of γδ T cells is their activation by phosphoantigens, which are intermediates of the Mevalonate and Rohmer pathway of isoprenoid biosynthesis, such as IPP and HDMAPP, respectively, the global effects of such treatments on Vγ9Vδ2 T cells remain elusive. Here, we used the high-throughput transcriptomics approach to elucidate the transcriptional changes in human Vγ9Vδ2 T cells upon HDMAPP, IPP, and anti-CD3 treatments in combination with interleukin 2 (IL2) cytokine stimulation. These activation treatments exhibited a dramatic surge in transcription with distinctly enriched pathways. We further assessed the transcriptional dynamics upon inhibition of Notch signaling coupled with activation treatments. We observed that the metabolic processes are most affected upon Notch inhibition via GSI-X. The key effector genes involved in gamma–delta cytotoxic function were downregulated upon Notch blockade even in combination with activation treatment, suggesting a transcriptional crosstalk between T-cell receptor (TCR) signaling and Notch signaling in Vγ9Vδ2 T cells. Collectively, we demonstrate the effect of the activation of TCR signaling by phosphoantigens or anti-CD3 on the transcriptional status of Vγ9Vδ2 T cells along with IL2 stimulation. We further show that the blockade of Notch signaling antagonistically affects this activation.

Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2165
Author(s):  
Sangwook Kim ◽  
Byeonghwi Lim ◽  
Sameer-ul-Salam Mattoo ◽  
Eun-Young Oh ◽  
Chang-Gi Jeong ◽  
...  

We aimed to comprehensively understand the functional mechanisms of immunity, especially of the CD8+/− subsets of gamma delta (γδ) T cells, using an RNA-sequencing analysis. Herein, γδ T cells were obtained from bronchial lymph node tissues of 38-day-old (after weaning 10-day: D10) and 56-day-old (after weaning 28-day: D28) weaned pigs and sorted into CD8+ and CD8− groups. Differentially expressed genes (DEGs) were identified based on the CD8 groups at D10 and D28 time points. We confirmed 1699 DEGs between D10 CD8+ versus D10 CD8− groups and 1784 DEGs between D28 CD8+ versus D28 CD8− groups; 646 upregulated and 561 downregulated DEGs were common. The common upregulated DEGs were enriched in the cytokine–cytokine receptor interaction and T cell receptor (TCR) signaling pathway, and the common downregulated DEGs were enriched in the B cell receptor signaling pathway. Further, chemokine-related genes, interferon gamma, and CD40 ligand were involved in the cytokine–cytokine receptor interaction and TCR signaling pathway, which are associated with inter-regulation in immunity. We expect our results to form the basic data required for understanding the mechanisms of γδ T cells in pigs; however, further studies are required in order to reveal the dynamic changes in γδ T cells under pathogenic infections, such as those by viruses.


2020 ◽  
Vol 12 (569) ◽  
pp. eaaw4744
Author(s):  
Siawosh K. Eskandari ◽  
Ina Sulkaj ◽  
Mariane B. Melo ◽  
Na Li ◽  
Hazim Allos ◽  
...  

Adoptive cell transfer of ex vivo expanded regulatory T cells (Tregs) has shown immense potential in animal models of auto- and alloimmunity. However, the effective translation of such Treg therapies to the clinic has been slow. Because Treg homeostasis is known to require continuous T cell receptor (TCR) ligation and exogenous interleukin-2 (IL-2), some investigators have explored the use of low-dose IL-2 injections to increase endogenous Treg responses. Systemic IL-2 immunotherapy, however, can also lead to the activation of cytotoxic T lymphocytes and natural killer cells, causing adverse therapeutic outcomes. Here, we describe a drug delivery platform, which can be engineered to autostimulate Tregs with IL-2 in response to TCR-dependent activation, and thus activate these cells in sites of antigen encounter. To this end, protein nanogels (NGs) were synthesized with cleavable bis(N-hydroxysuccinimide) cross-linkers and IL-2/Fc fusion (IL-2) proteins to form particles that release IL-2 under reducing conditions, as found at the surface of T cells receiving stimulation through the TCR. Tregs surface-conjugated with IL-2 NGs were found to have preferential, allograft-protective effects relative to unmodified Tregs or Tregs stimulated with systemic IL-2. We demonstrate that murine and human NG–modified Tregs carrying an IL-2 cargo perform better than conventional Tregs in suppressing alloimmunity in murine and humanized mouse allotransplantation models. In all, the technology presented in this study has the potential to improve Treg transfer therapy by enabling the regulated spatiotemporal provision of IL-2 to antigen-primed Tregs.


2004 ◽  
Vol 199 (3) ◽  
pp. 369-379 ◽  
Author(s):  
Magdalena M. Gorska ◽  
Susan J. Stafford ◽  
Osman Cen ◽  
Sanjiv Sur ◽  
Rafeul Alam

The first step in T cell receptor for antigen (TCR) signaling is the activation of the receptor-bound Src kinases, Lck and Fyn. The exact mechanism of this process is unknown. Here, we report that the novel Src homology (SH) 3/SH2 ligand–Uncoordinated 119 (Unc119) associates with CD3 and CD4, and activates Lck and Fyn. Unc119 overexpression increases Lck/Fyn activity in T cells. In Unc119-deficient T cells, Lck/Fyn activity is dramatically reduced with concomitant decrease in interleukin 2 production and cellular proliferation. Reconstitution of cells with Unc119 reverses the signaling and functional outcome. Thus, Unc119 is a receptor-associated activator of Src-type kinases. It provides a novel mechanism of signal generation in the TCR complex.


1988 ◽  
Vol 168 (6) ◽  
pp. 2231-2249 ◽  
Author(s):  
M L Toribio ◽  
A de la Hera ◽  
J Borst ◽  
M A Marcos ◽  
C Márquez ◽  
...  

In this report, we have undertaken the phenotypic, functional and molecular characterization of a minor (less than 5%) subpopulation of adult thymocytes regarded as the earliest intrathymic T-cell precursors. Pro-T cells were immunoselected and shown to express different hematopoietic cell markers (CD45, CD38, CD7, CD5) and some activation-related molecules (4F2, Tr, HLA class II), but lack conventional T cell antigens (CD2-1-3-4-8-). TCR-gamma RNA messages are already expressed at this early ontogenic stage, while alpha and beta chain TCR genes remain in germline configuration. In vitro analyses of the growth requirements of pro-T cells demonstrated the involvement of the IL-2 pathway in promoting their proliferation and differentiation into CD3+ CD4+ or CD8+ mature thymocytes. Moreover, during the IL-2-mediated maturation process rearrangements and expression of both alpha and beta chain TCR genes occurred, and resulted in the acquisition of alpha/beta as well as gamma/delta (either disulphide-linked or non-disulphide-linked) heterodimeric TCR among the pro-T cell progeny.


1998 ◽  
Vol 187 (10) ◽  
pp. 1721-1727 ◽  
Author(s):  
Karen-Qianye Liu ◽  
Stephen C. Bunnell ◽  
Christine B. Gurniak ◽  
Leslie J. Berg

Itk, a Tec family tyrosine kinase, plays an important but as yet undefined role in T cell receptor (TCR) signaling. Here we show that T cells from Itk-deficient mice have a TCR-proximal signaling defect, resulting in defective interleukin 2 secretion. Upon TCR stimulation, Itk−/− T cells release normal amounts of calcium from intracellular stores, but fail to open plasma membrane calcium channels. Since thapsigargin-induced store depletion triggers normal calcium entry in Itk−/− T cells, an impaired biochemical link between store depletion and channel opening is unlikely to be responsible for this defect. Biochemical studies indicate that TCR-induced inositol 1,4,5 tris-phosphate (IP3) generation and phospholipase C γ1 tyrosine phosphorylation are substantially reduced in Itk−/− T cells. In contrast, TCR-ζ and ZAP-70 are phosphorylated normally, suggesting that Itk functions downstream of, or in parallel to, ZAP-70 to facilitate TCR-induced IP3 production. These findings support a model in which quantitative differences in cytosolic IP3 trigger distinct responses, and in which only high concentrations of IP3 trigger the influx of extracellular calcium.


2001 ◽  
Vol 21 (20) ◽  
pp. 6939-6950 ◽  
Author(s):  
Maria-Concetta Verı́ ◽  
Karen E. DeBell ◽  
Maria-Cristina Seminario ◽  
Angela DiBaldassarre ◽  
Ilona Reischl ◽  
...  

ABSTRACT Numerous signaling molecules associate with lipid rafts, either constitutively or after engagement of surface receptors. One such molecule, phospholipase Cγ-1 (PLCγ1), translocates from the cytosol to lipid rafts during T-cell receptor (TCR) signaling. To investigate the role played by lipid rafts in the activation of this molecule in T cells, an influenza virus hemagglutinin A (HA)-tagged PLCγ1 was ectopically expressed in Jurkat T cells and targeted to these microdomains by the addition of a dual-acylation signal. Raft-targeted PLCγ1 was constitutively tyrosine phosphorylated and induced constitutive NF-AT-dependent transcription and interleukin-2 secretion in Jurkat cells. Tyrosine phosphorylation of raft-targeted PLCγ1 did not require Zap-70 or the interaction with the adapters Lat and Slp-76, molecules that are necessary for TCR signaling. In contrast, the Src family kinase Lck was required. Coexpression in HEK 293T cells of PLCγ1-HA with Lck or the Tec family kinase Rlk resulted in preferential phosphorylation of raft-targeted PLCγ1 over wild-type PLCγ1. These data show that localization of PLCγ1 in lipid rafts is sufficient for its activation and demonstrate a role for lipid rafts as microdomains that dynamically segregate and integrate PLCγ1 with other signaling components.


1998 ◽  
Vol 95 (16) ◽  
pp. 9459-9464 ◽  
Author(s):  
Stephanie T. Page ◽  
Lisa Y. Bogatzki ◽  
Jessica A. Hamerman ◽  
Claire H. Sweenie ◽  
Philip J. Hogarth ◽  
...  

The majority of T cells develop in the thymus and exhibit well characterized phenotypic changes associated with their maturation. Previous analysis of intestinal intraepithelial lymphocytes (IEL) from nude mice and a variety of experimentally manipulated models led to the view that at least a portion of these cells represent a distinct T cell population that matures extrathymically. The IEL that are postulated to mature within the intestine include both T cell receptor (TCR) αβ- and γδ-bearing subpopulations. They can be distinguished from conventional thymically derived T cells in that they express an unusual coreceptor, a CD8α homodimer. In addition, they can utilize the Fc receptor γ-chain in place of the CD3-associated ζ-chain for TCR signaling and their maturation depends on the interleukin 2 receptor β-chain. Moreover, TCRαβ+CD8αα+ IEL are not subject to conventional thymic selection processes. To determine whether CD3−CD8αα+ IEL represent precursors of T cells developing extrathymically, we examined IEL from knockout mice lacking the recombination activating gene-1 (rag-1), CD3ɛ, or both Lck and Fyn, in which thymic T cell development is arrested. CD3−CD8αα+CD16+ IEL from all three mutant strains, as well as from nude mice, included cells that express pre-TCRα transcripts, a marker of T cell commitment. These IEL from lck−/−fyn−/− animals exhibited TCR β-gene rearrangement. However, CD3−CD8αα+CD16+ IEL from ɛ-deficient mice had not undergone Dβ-Jβ joining, despite normal rearrangement at the TCRβ locus in thymocytes from these animals. These results revealed another distinction between thymocytes and IEL, and suggested an unexpectedly early role for CD3ɛ in IEL maturation.


Cancers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 130 ◽  
Author(s):  
Karin Schilbach ◽  
Christian Welker ◽  
Naomi Krickeberg ◽  
Carlotta Kaißer ◽  
Sabine Schleicher ◽  
...  

Abundant IFN-γ secretion, potent cytotoxicity, and major histocompatibility complex-independent targeting of a large spectrum of tumors make γδ T cells attractive candidates for cancer immunotherapy. Upon tumor recognition through the T-cell receptor (TCR), NK-receptors, or NKG2D, γδ T cells generate the pro-inflammatory cytokines TNF-α and IFN-γ, or granzymes and perforin that mediate cellular apoptosis. Despite these favorable potentials, most clinical trials testing the adoptive transfer of pharmacologically TCR-targeted and expanded γδ T cells resulted in a limited response. Recently, the TCR-independent activation of γδ T cells was identified. However, the modulation of γδ T cell’s effector functions solely by cytokines remains to be elucidated. In the present study, we systematically analyzed the impact of IL-2, IL-12, and IL-18 in parallel with TCR stimulation on proliferation, cytokine production, and anti-tumor activity of γδ T cells. Our results demonstrate that IL-12 and IL-18, when combined, constitute the most potent stimulus to enhance anti-tumor activity and induce proliferation and IFN-γ production by γδ T cells in the absence of TCR signaling. Intriguingly, stimulation with IL-12 and IL-18 without TCR stimulus induces a comparable degree of anti-tumor activity in γδ T cells to TCR crosslinking by killing tumor cells and driving cancer cells into senescence. These findings approve the use of IL-12/IL-18-stimulated γδ T cells for adoptive cell therapy to boost anti-tumor activity by γδ T cells.


Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Tang-Dong Liao ◽  
Jiang Xu ◽  
Oscar A Carretero

Gamma Delta T lymphocytes are important innate immune component which express γδ T cell receptor (TCR). These cells are capable of spontaneous secretion of IL-17 and IFN gamma proinflammatory cytokines. Recently, new evidence suggests that the innate and adaptive immune system is involved in the hypertension and end-organ damage. We tested the hypothesis whether deficiency in γδ TCR has a beneficial effect on cardiac function in Angiotension II (Ang II)-induced hypertension. Male Balb/cByj wild-type (WT) and Tcrγδ knockout (Tcrγδ-/-) mice were infused with vehicle or Ang II at dosage of 400ng/kg/min for 4 weeks. Our results showed Systolic blood pressure (SBP) was increased significantly after 1 week of Ang II infusion, and the increase was sustained 4 weeks in WT mice, however in Tcrγδ-/- mice, SBP dropped significantly at 4 weeks compared to WT (table1). Echocardiography data showed that ejection fraction (EF) and shortening fraction (SF) were decreased significantly after Ang II infusion; these effects were exacerbated in Tcrγδ-/- mice given Ang II. Also both mass and chamber dimension increased greater in Tcrγδ-/- mice given Ang II compared to WT (table1). The results indicated Tcrγδ-/- mice given Ang II develop eccentric hypertrophy. We conclude that lacking of γδ T cells has a detrimental effect on cardiac function in Ang II-induced hypertension in Balb/cByJ mice. table1:


2004 ◽  
Vol 72 (8) ◽  
pp. 4612-4618 ◽  
Author(s):  
B. Vesosky ◽  
O. C. Turner ◽  
J. Turner ◽  
I. M. Orme

ABSTRACT A large percentage of lymphocytes in the blood of cattle express the γδ T-cell receptor, but specific functions for these cells have not yet been clearly defined. There is evidence, however, that human, murine, and bovine γδ T cells have a role in the immune response to mycobacteria. This study investigated the ability of bovine γδ T cells to expand and produce gamma interferon (IFN-γ) in response to stimulation with mycobacterial products. Bovine γδ T cells, isolated from the peripheral blood of healthy cattle, expanded following in vitro stimulation with live mycobacteria, mycobacterial crude cell wall extract, and Mycobacterium bovis culture filtrate proteins. In addition, purified γδ T cells, cocultured with purified monocytes and interleukin-2, consistently produced significant amounts of IFN-γ in response to mycobacterial cell wall. The IFN-γ-inducing component of the cell wall was further identified as a proteolytically resistant, non-sodium dodecyl sulfate-soluble component of the mycolylarabinogalactan peptidoglycan.


Sign in / Sign up

Export Citation Format

Share Document