scholarly journals Immunomodulatory Effects of Dopamine in Inflammatory Diseases

2021 ◽  
Vol 12 ◽  
Author(s):  
Yifei Feng ◽  
Yan Lu

Dopamine (DA) receptor, a significant G protein-coupled receptor, is classified into two families: D1-like (D1 and D5) and D2-like (D2, D3, and D4) receptor families, with further formation of homodimers, heteromers, and receptor mosaic. Increasing evidence suggests that the immune system can be affected by the nervous system and neurotransmitters, such as dopamine. Recently, the role of the DA receptor in inflammation has been widely studied, mainly focusing on NLRP3 inflammasome, NF-κB pathway, and immune cells. This article provides a brief review of the structures, functions, and signaling pathways of DA receptors and their relationships with inflammation. With detailed descriptions of their roles in Parkinson disease, inflammatory bowel disease, rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis, this article provides a theoretical basis for drug development targeting DA receptors in inflammatory diseases.

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaofang Wang ◽  
Panpan Yi ◽  
Yuejin Liang

IL-36 is a member of the interleukin 1 cytokine family, which is currently experiencing a renaissance due to the growing understanding of its context-dependent roles and advances in our understanding of the inflammatory response. The immunological role of IL-36 has revealed its profound and indispensable functional roles in psoriasis, as well as in several inflammatory diseases, including inflammatory bowel disease (IBD), systemic lupus erythematosus, rheumatoid arthritis (RA) and cancer. More recently, an increasing body of evidence suggests that IL-36 plays a crucial role in viral, bacterial and fungal infections. There is a growing interest as to whether IL-36 contributes to host protective immune responses against infection as well as the potential implications of IL-36 for the development of new therapeutic strategies. In this review, we summarize the recent progress in understanding cellular expression, regulatory mechanisms and biological roles of IL-36 in infectious diseases, which suggest more specific strategies to maneuver IL-36 as a diagnostic or therapeutic target, especially in COVID-19.


Gut ◽  
2021 ◽  
pp. gutjnl-2020-323363
Author(s):  
Ester Pagano ◽  
Joshua E Elias ◽  
Georg Schneditz ◽  
Svetlana Saveljeva ◽  
Lorraine M Holland ◽  
...  

ObjectivePrimary sclerosing cholangitis (PSC) is in 70% of cases associated with inflammatory bowel disease. The hypermorphic T108M variant of the orphan G protein-coupled receptor GPR35 increases risk for PSC and ulcerative colitis (UC), conditions strongly predisposing for inflammation-associated liver and colon cancer. Lack of GPR35 reduces tumour numbers in mouse models of spontaneous and colitis associated cancer. The tumour microenvironment substantially determines tumour growth, and tumour-associated macrophages are crucial for neovascularisation. We aim to understand the role of the GPR35 pathway in the tumour microenvironment of spontaneous and colitis-associated colon cancers.DesignMice lacking GPR35 on their macrophages underwent models of spontaneous colon cancer or colitis-associated cancer. The role of tumour-associated macrophages was then assessed in biochemical and functional assays.ResultsHere, we show that GPR35 on macrophages is a potent amplifier of tumour growth by stimulating neoangiogenesis and tumour tissue remodelling. Deletion of Gpr35 in macrophages profoundly reduces tumour growth in inflammation-associated and spontaneous tumour models caused by mutant tumour suppressor adenomatous polyposis coli. Neoangiogenesis and matrix metalloproteinase activity is promoted by GPR35 via Na/K-ATPase-dependent ion pumping and Src activation, and is selectively inhibited by a GPR35-specific pepducin. Supernatants from human inducible-pluripotent-stem-cell derived macrophages carrying the UC and PSC risk variant stimulate tube formation by enhancing the release of angiogenic factors.ConclusionsActivation of the GPR35 pathway promotes tumour growth via two separate routes, by directly augmenting proliferation in epithelial cells that express the receptor, and by coordinating macrophages’ ability to create a tumour-permissive environment.


2021 ◽  
Vol 9 (4) ◽  
pp. 697
Author(s):  
Valerio Baldelli ◽  
Franco Scaldaferri ◽  
Lorenza Putignani ◽  
Federica Del Chierico

Inflammatory bowel diseases (IBDs) are a group of chronic gastrointestinal inflammatory diseases with unknown etiology. There is a combination of well documented factors in their pathogenesis, including intestinal microbiota dysbiosis. The symbiotic microbiota plays important functions in the host, and the loss of beneficial microbes could favor the expansion of microbial pathobionts. In particular, the bloom of potentially harmful Proteobacteria, especially Enterobacteriaceae, has been described as enhancing the inflammatory response, as observed in IBDs. Herein, we seek to investigate the contribution of Enterobacteriaceae to IBD pathogenesis whilst considering the continuous expansion of the literature and data. Despite the mechanism of their expansion still remaining unclear, their expansion could be correlated with the increase in nitrate and oxygen levels in the inflamed gut and with the bile acid dysmetabolism described in IBD patients. Furthermore, in several Enterobacteriaceae studies conducted at a species level, it has been suggested that some adherent-invasive Escherichia coli (AIEC) play an important role in IBD pathogenesis. Overall, this review highlights the pivotal role played by Enterobacteriaceae in gut dysbiosis associated with IBD pathogenesis and progression.


Blood ◽  
2009 ◽  
Vol 113 (1) ◽  
pp. 46-57 ◽  
Author(s):  
Bin Zhang ◽  
Rui Liu ◽  
Dan Shi ◽  
Xingxia Liu ◽  
Yuan Chen ◽  
...  

Abstract Mesenchymal stem cells (MSCs), in addition to their multilineage differentiation, exert immunomodulatory effects on immune cells, even dendritic cells (DCs). However, whether they influence the destiny of full mature DCs (maDCs) remains controversial. Here we report that MSCs vigorously promote proliferation of maDCs, significantly reduce their expression of Ia, CD11c, CD80, CD86, and CD40 while increasing CD11b expression. Interestingly, though these phenotypes clearly suggest their skew to immature status, bacterial lipopolysaccharide (LPS) stimulation could not reverse this trend. Moreover, high endocytosic capacity, low immunogenicity, and strong immunoregulatory function of MSC-treated maDCs (MSC-DCs) were also observed. Furthermore we found that MSCs, partly via cell-cell contact, drive maDCs to differentiate into a novel Jagged-2–dependent regulatory DC population and escape their apoptotic fate. These results further support the role of MSCs in preventing rejection in organ transplantation and treatment of autoimmune disease.


Author(s):  
Rodolfo Perez-Alamino ◽  
Raquel Cuchacovich ◽  
Luis R. Espinoza ◽  
Constance P. Porretta ◽  
Arnold H. Zea

Author(s):  
Ida Dzifa Dey ◽  
David Isenberg

Systemic lupus erythematosus (SLE) is an autoimmune rheumatic disease with varied presentation and a disease course characterized by remission and flares. Over the last 50 years the prognosis of SLE has improved considerably. The introductions of corticosteroids and later of cytotoxic drugs, dialysis, and renal transplantation were the major contributors to this improvement. Nevertheless, the treatment and general management of lupus continues to present a challenge. While lupus may, for some patients, represent a relatively mild set of problems, many others require large doses of immunosuppressive drugs, which carry long-term concerns about side effects. New immunotherapeutic drugs, with actions more closely targeted to the immune cells and molecules involved in the pathogenesis of SLE, are being introduced and the future looks promising. The role of early atherosclerosis and cardiovascular disease as a cause of death in patients with SLE is increasingly recognized and will present further challenges in the future.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Fang Liu ◽  
Seul A. Lee ◽  
Stephen M. Riordan ◽  
Li Zhang ◽  
Lixin Zhu

Anti-cytokine antibodies are used in treating chronic inflammatory diseases and autoimmune diseases such as inflammatory bowel disease and rheumatic diseases. Patients with these diseases often have a compromised gut barrier function, suggesting that anti-cytokine antibodies may contribute to the re-establishment of gut barrier integrity, in addition to their immunomodulatory effects. This paper reviews the effects of anti-cytokine antibodies on gut barrier function and their mechanisms.


Metabolites ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 372 ◽  
Author(s):  
Karl J. Harber ◽  
Kyra E. de Goede ◽  
Sanne G. S. Verberk ◽  
Elisa Meinster ◽  
Helga E. de Vries ◽  
...  

Immunometabolism revealed the crucial role of cellular metabolism in controlling immune cell phenotype and functions. Macrophages, key immune cells that support progression of numerous inflammatory diseases, have been well described as undergoing vast metabolic rewiring upon activation. The immunometabolite succinate particularly gained a lot of attention and emerged as a crucial regulator of macrophage responses and inflammation. Succinate was originally described as a metabolite that supports inflammation via distinct routes. Recently, studies have indicated that succinate and its receptor SUCNR1 can suppress immune responses as well. These apparent contradictory effects might be due to specific experimental settings and particularly the use of distinct succinate forms. We therefore compared the phenotypic and functional effects of distinct succinate forms and receptor mouse models that were previously used for studying succinate immunomodulation. Here, we show that succinate can suppress secretion of inflammatory mediators IL-6, tumor necrosis factor (TNF) and nitric oxide (NO), as well as inhibit Il1b mRNA expression of inflammatory macrophages in a SUCNR1-independent manner. We also observed that macrophage SUCNR1 deficiency led to an enhanced inflammatory response without addition of exogenous succinate. While our study does not reveal new mechanistic insights into how succinate elicits different inflammatory responses, it does indicate that the inflammatory effects of succinate and its receptor SUCNR1 in macrophages are clearly context dependent.


2010 ◽  
Vol 31 (3) ◽  
pp. 369-378 ◽  
Author(s):  
Adriana Elizabeth Monsiváis-Urenda ◽  
Lourdes Baranda ◽  
Crisol Alvarez-Quiroga ◽  
Carlos Abud-Mendoza ◽  
Roberto González-Amaro

Author(s):  
Marjatta Leirisalo-Repo ◽  
John D. Carter

Spondyloarthritis (SpA) is the designation encompassing a group of inflammatory diseases with several features in common. The patients have mono- or oligoarthritis with or without inflammatory back symptoms. Distinctive extra-articular inflammatory symptoms also characterize the diseases. The diagnostic subgroups in the SpA family include reactive arthritis (ReA), ankylosing spondylitis (AS), arthritis associated with inflammatory bowel disease (IBD), psoriasis arthritis (PsA), and some forms of juvenile-onset arthritis. These diseases share a strong association with a genetic marker, HLA-B27, absence of rheumatoid factor, tendency to family aggregation, and frequently occurring extra-articular manifestations. This chapter discusses the role of infections, either as triggering of the disease, most evident in the case of ReA, or as possibly contributing factors in the development of chronic forms of SpA and AS.


Sign in / Sign up

Export Citation Format

Share Document