scholarly journals An Albumin-Binding Domain Peptide Confers Enhanced Immunoprotection Against Viral Myocarditis by CVB3 VP1 Vaccine

2021 ◽  
Vol 12 ◽  
Author(s):  
Yue Gao ◽  
Yan Yue ◽  
Sidong Xiong

Coxsackievirus B3 (CVB3)-induced viral myocarditis is a common clinical cardiovascular disease without effective available vaccine. In this study, we tried to potentiate the immunoprotection efficacy of our previous CVB3-specific VP1 protein vaccine by introducing a streptococcal protein G-derived, draining lymph nodes (dLNs)-targeting albumin-binding domain (ABD) peptide. We found that compared with the original VP1 vaccine, ABD-fused VP1 (ABD-VP1) vaccine gained the new ability to efficiently bind murine albumin both in vitro and in vivo, possessed a much longer serum half-life in serum and exhibited more abundance in the dLNs after immunization. Accordingly, ABD-VP1 immunization not only significantly facilitated the enrichment and maturation of dendritic cells (DCs), induced higher percentages of IFN-γ+ CD8+ cells in the dLNs, but also robustly promoted VP1-induced T cell proliferation and cytotoxic T lymphocyte (CTL) responses in the spleens. More importantly, ABD-VP1 also elicited higher percentages of protective CD44hi CD62Lhi memory T cells in dLNs and spleens. Consequently, obvious protective effect against viral myocarditis was conferred by ABD-VP1 vaccine compared to the VP1 vaccine, reflected by the less body weight loss, improved cardiac function, alleviated cardiac histomorphological changes and an increased 28-day survival rate. Our results indicated that the ABD might be a promising immune-enhancing regime for vaccine design and development.

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Fatemeh Yadavar Nikravesh ◽  
Samira Shirkhani ◽  
Elham Bayat ◽  
Yeganeh Talebkhan ◽  
Esmat Mirabzadeh ◽  
...  

AbstractGranulocyte colony stimulating factor (GCSF) can decrease mortality of patients undergo chemotherapy through increasing neutrophil counts. Many strategies have been developed to improve its blood circulating time. Albumin binding domain (ABD) was genetically fused to N-terminal end of GCSF encoding sequence and expressed as cytoplasmic inclusion bodies within Escherichia coli. Biological activity of ABD-GCSF protein was assessed by proliferation assay on NFS-60 cells. Physicochemical properties were analyzed through size exclusion chromatography, circular dichroism, intrinsic fluorescence spectroscopy and dynamic light scattering. Pharmacodynamics and pharmacokinetic properties were also investigated in a neutropenic rat model. CD and IFS spectra revealed that ABD fusion to GCSF did not significantly affect the secondary and tertiary structures of the molecule. DLS and SEC results indicated the absence of aggregation formation. EC50 value of the ABD-GCSF in proliferation of NFS-60 cells was 75.76 pg/ml after 72 h in comparison with control GCSF molecules (Filgrastim: 73.1 pg/ml and PEG-Filgrastim: 44.6 pg/ml). Animal studies of ABD-GCSF represented improved serum half-life (9.3 ± 0.7 h) and consequently reduced renal clearance (16.1 ± 1.4 ml/h.kg) in comparison with Filgrastim (1.7 ± 0.1 h). Enhanced neutrophils count following administration of ABD-GCSF was comparable with Filgrastim and weaker than PEG-Filgrastim treated rats. In vitro and in vivo results suggested the ABD fusion as a potential approach for improving GCSF properties.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1974
Author(s):  
Wen Yin ◽  
Tianqi Xu ◽  
Mohamed Altai ◽  
Maryam Orougeni ◽  
Jie Zhang ◽  
...  

Human epidermal growth factor receptor 2 (HER2) is a clinically validated target for breast cancer therapy. Previously, a drug-fused HER2-targeting affinity protein construct successfully extended the survival of mice bearing HER2-expressing xenografts. The aim of this study was to evaluate the influence of the number and positioning of the protein domains in the drug conjugate. Seven HER2-targeting affibody-based constructs, including one or two affibody molecules (Z) with or without an albumin-binding domain (ABD), namely Z, Z-ABD, ABD-Z, Z-Z, Z-Z-ABD, Z-ABD-Z, and ABD-Z-Z, were evaluated on their effects on cell growth, in vivo targeting, and biodistribution. The biodistribution study demonstrated that the monomeric constructs had longer blood retention and lower hepatic uptake than the dimeric ones. A dimeric construct, specifically ABD-Z-Z, could stimulate the proliferation of HER2 expressing SKOV-3 cells in vitro and the growth of tumors in vivo, whereas the monomeric construct Z-ABD could not. These two constructs demonstrated a therapeutic effect when coupled to mcDM1; however, the effect was more pronounced for the non-stimulating Z-ABD. The median survival of the mice treated with Z-ABD-mcDM1 was 63 days compared to the 37 days for those treated with ABD-Z-Z-mcDM1 or for the control animals. Domain permutation of an ABD-fused HER2-targeting affibody-based drug conjugate significantly influences tumor cell proliferation and therapy efficacy. The monomeric conjugate Z-ABD is the most promising format for targeted delivery of the cytotoxic drug DM1.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 977
Author(s):  
Ayman Abouzayed ◽  
Hanna Tano ◽  
Ábel Nagy ◽  
Sara S. Rinne ◽  
Fadya Wadeea ◽  
...  

The targeting of gastrin-releasing peptide receptors (GRPR) was recently proposed for targeted therapy, e.g., radiotherapy. Multiple and frequent injections of peptide-based therapeutic agents would be required due to rapid blood clearance. By conjugation of the GRPR antagonist RM26 (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2) to an ABD (albumin-binding domain), we aimed to extend the blood circulation of peptides. The synthesized conjugate DOTA-ABD-RM26 was labelled with indium-111 and evaluated in vitro and in vivo. The labelled conjugate was stable in PBS and retained specificity and its antagonistic function against GRPR. The half-maximal inhibitory concentration (IC50) of natIn-DOTA-ABD-RM26 in the presence of human serum albumin was 49 ± 5 nM. [111In]In-DOTA-ABD-RM26 had a significantly longer residence time in blood and in tumors (without a significant decrease of up to 144 h pi) than the parental RM26 peptide. We conclude that the ABD-RM26 conjugate can be used for GRPR-targeted therapy and delivery of cytotoxic drugs. However, the undesirable elevated activity uptake in kidneys abolishes its use for radionuclide therapy. This proof-of-principle study justified further optimization of the molecular design of the ABD-RM26 conjugate.


mAbs ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 1893888
Author(s):  
Simone Mester ◽  
Mitchell Evers ◽  
Saskia Meyer ◽  
Jeannette Nilsen ◽  
Victor Greiff ◽  
...  

2020 ◽  
Vol 27 (12) ◽  
pp. 699-710
Author(s):  
Irasema Mendieta ◽  
Gabriel Rodríguez-Gómez ◽  
Bertha Rueda-Zarazúa ◽  
Julia Rodríguez-Castelán ◽  
Winniberg Álvarez-León ◽  
...  

Neuroblastoma (NB) is the most common solid childhood tumor, and all-trans retinoic acid (ATRA) is used as a treatment to decrease minimal residual disease. Molecular iodine (I2) induces differentiation and/or apoptosis in several neoplastic cells through activation of PPARγ nuclear receptors. Here, we analyzed whether the coadministration of I2 and ATRA increases the efficacy of NB treatment. ATRA-sensitive (SH-SY5Y), partially-sensitive (SK-N-BE(2)), and non-sensitive (SK-N-AS) NB cells were used to analyze the effect of I2 and ATRA in vitro and in xenografts (Foxn1 nu/nu mice), exploring actions on cellular viability, differentiation, and molecular responses. In the SH-SY5Y cells, 200 μM I2 caused a 100-fold (0.01 µM) reduction in the antiproliferative dose of ATRA and promoted neurite extension and neural marker expression (tyrosine hydroxylase (TH) and tyrosine kinase receptor alpha (Trk-A)). In SK-N-AS, the I2 supplement sensitized these cells to 0.1 μM ATRA, increasing the ATRA-receptor (RARα) and PPARγ expression, and decreasing the Survivin expression. The I2 supplement increased the mitochondrial membrane potential in SK-N-AS suggesting the participation of mitochondrial-mediated mechanisms involved in the sensibilization to ATRA. In vivo, oral I2 supplementation (0.025%) synergized the antitumor effect of ATRA (1.5 mg/kg BW) and prevented side effects (body weight loss and diarrhea episodes). The immunohistochemical analysis showed that I2 supplementation decreased the intratumoral vasculature (CD34). We suggest that the I2 + ATRA combination should be studied in preclinical and clinical trials to evaluate its potential adjuvant effect in addition to conventional treatments.


2001 ◽  
Vol 193 (11) ◽  
pp. 1295-1302 ◽  
Author(s):  
Megan K. Levings ◽  
Romina Sangregorio ◽  
Maria-Grazia Roncarolo

Active suppression by T regulatory (Tr) cells plays an important role in the downregulation of T cell responses to foreign and self-antigens. Mouse CD4+ Tr cells that express CD25 possess remarkable suppressive activity in vitro and in autoimmune disease models in vivo. Thus far, the existence of a similar subset of CD25+CD4+ Tr cells in humans has not been reported. Here we show that human CD25+CD4+ Tr cells isolated from peripheral blood failed to proliferate and displayed reduced expression of CD40 ligand (CD40L), in response to T cell receptor–mediated polyclonal activation, but strongly upregulated cytotoxic T lymphocyte–associated antigen (CTLA)-4. Human CD25+CD4+ Tr cells also did not proliferate in response to allogeneic antigen-presenting cells, but they produced interleukin (IL)-10, transforming growth factor (TGF)-β, low levels of interferon (IFN)-γ, and no IL-4 or IL-2. Importantly, CD25+CD4+ Tr cells strongly inhibited the proliferative responses of both naive and memory CD4+ T cells to alloantigens, but neither IL-10, TGF-β, nor CTLA-4 seemed to be directly required for their suppressive effects. CD25+CD4+ Tr cells could be expanded in vitro in the presence of IL-2 and allogeneic feeder cells and maintained their suppressive capacities. These findings that CD25+CD4+ Tr cells with immunosuppressive effects can be isolated from peripheral blood and expanded in vitro without loss of function represent a major advance towards the therapeutic use of these cells in T cell–mediated diseases.


2000 ◽  
Vol 191 (3) ◽  
pp. 541-550 ◽  
Author(s):  
Zhengbin Lu ◽  
Lingxian Yuan ◽  
Xianzheng Zhou ◽  
Eduardo Sotomayor ◽  
Hyam I. Levitsky ◽  
...  

In many cases, induction of CD8+ CTL responses requires CD4+ T cell help. Recently, it has been shown that a dominant pathway of CD4+ help is via antigen-presenting cell (APC) activation through engagement of CD40 by CD40 ligand on CD4+ T cells. To further study this three cell interaction, we established an in vitro system using dendritic cells (DCs) as APCs and influenza hemagglutinin (HA) class I and II peptide–specific T cell antigen receptor transgenic T cells as cytotoxic T lymphocyte precursors and CD4+ T helper cells, respectively. We found that CD4+ T cells can provide potent help for DCs to activate CD8+ T cells when antigen is provided in the form of either cell lysate, recombinant protein, or synthetic peptides. Surprisingly, this help is completely independent of CD40. Moreover, CD40-independent CD4+ help can be documented in vivo. Finally, we show that CD40-independent T cell help is delivered through both sensitization of DCs and direct CD4+–CD8+ T cell communication via lymphokines. Therefore, we conclude that CD4+ help comprises at least three components: CD40-dependent DC sensitization, CD40-independent DC sensitization, and direct lymphokine-dependent CD4+–CD8+ T cell communication.


2006 ◽  
Vol 26 (14) ◽  
pp. 5249-5258 ◽  
Author(s):  
Vincenzo Coppola ◽  
Colleen A. Barrick ◽  
Sara Bobisse ◽  
Maria Cecilia Rodriguez-Galan ◽  
Michela Pivetta ◽  
...  

ABSTRACT Trafficking and cell adhesion are key properties of cells of the immune system. However, the molecular pathways that control these cellular behaviors are still poorly understood. Cybr is a scaffold protein highly expressed in the hematopoietic/immune system whose physiological role is still unknown. In vitro studies have shown it regulates LFA-1, a crucial molecule in lymphocyte attachment and migration. Cybr also binds cytohesin-1, a guanine nucleotide exchange factor for the ARF GTPases, which affects actin cytoskeleton remodeling during cell migration. Here we show that expression of Cybr in vivo is differentially modulated by type 1 cytokines during lymphocyte maturation. In mice, Cybr deficiency negatively affects leukocytes circulating in blood and lymphocytes present in the lymph nodes. Moreover, in a Th1-polarized mouse model, lymphocyte trafficking is impaired by loss of Cybr, and Cybr-deficient mice with aseptic peritonitis have fewer cells than controls present in the peritoneal cavity, as well as fewer leukocytes leaving the bloodstream. Mutant mice injected with Moloney murine sarcoma/leukemia virus develop significantly larger tumors than wild-type mice and have reduced lymph node enlargement, suggesting reduced cytotoxic T-lymphocyte migration. Taken together, these data support a role for Cybr in leukocyte trafficking, especially in response to proinflammatory cytokines in stress conditions.


1999 ◽  
Vol 147 (6) ◽  
pp. 1275-1286 ◽  
Author(s):  
Conrad L. Leung ◽  
Dongming Sun ◽  
Min Zheng ◽  
David R. Knowles ◽  
Ronald K.H. Liem

We cloned and characterized a full-length cDNA of mouse actin cross-linking family 7 (mACF7) by sequential rapid amplification of cDNA ends–PCR. The completed mACF7 cDNA is 17 kb and codes for a 608-kD protein. The closest relative of mACF7 is the Drosophila protein Kakapo, which shares similar architecture with mACF7. mACF7 contains a putative actin-binding domain and a plakin-like domain that are highly homologous to dystonin (BPAG1-n) at its NH2 terminus. However, unlike dystonin, mACF7 does not contain a coiled–coil rod domain; instead, the rod domain of mACF7 is made up of 23 dystrophin-like spectrin repeats. At its COOH terminus, mACF7 contains two putative EF-hand calcium-binding motifs and a segment homologous to the growth arrest–specific protein, Gas2. In this paper, we demonstrate that the NH2-terminal actin-binding domain of mACF7 is functional both in vivo and in vitro. More importantly, we found that the COOH-terminal domain of mACF7 interacts with and stabilizes microtubules. In transfected cells full-length mACF7 can associate not only with actin but also with microtubules. Hence, we suggest a modified name: MACF (microtubule actin cross-linking factor). The properties of MACF are consistent with the observation that mutations in kakapo cause disorganization of microtubules in epidermal muscle attachment cells and some sensory neurons.


Sign in / Sign up

Export Citation Format

Share Document