scholarly journals The Broad Immunomodulatory Effects of IL-7 and Its Application In Vaccines

2021 ◽  
Vol 12 ◽  
Author(s):  
Juan Huang ◽  
Zhiyao Long ◽  
Renyong Jia ◽  
Mingshu Wang ◽  
Dekang Zhu ◽  
...  

Interleukin-7 (IL-7) is produced by stromal cells, keratinocytes, and epithelial cells in host tissues or tumors and exerts a wide range of immune effects mediated by the IL-7 receptor (IL-7R). IL-7 is primarily involved in regulating the development of B cells, T cells, natural killer cells, and dendritic cells via the JAK-STAT, PI3K-Akt, and MAPK pathways. This cytokine participates in the early generation of lymphocyte subsets and maintain the survival of all lymphocyte subsets; in particular, IL-7 is essential for orchestrating the rearrangement of immunoglobulin genes and T-cell receptor genes in precursor B and T cells, respectively. In addition, IL-7 can aid the activation of immune cells in anti-virus and anti-tumor immunity and plays important roles in the restoration of immune function. These biological functions of IL-7 make it an important molecular adjuvant to improve vaccine efficacy as it can promote and extend systemic immune responses against pathogens by prolonging lymphocyte survival, enhancing effector cell activity, and increasing antigen-specific memory cell production. This review focuses on the biological function and mechanism of IL-7 and summarizes its contribution towards improved vaccine efficacy. We hope to provide a thorough overview of this cytokine and provide strategies for the development of the future vaccines.

1991 ◽  
Vol 174 (4) ◽  
pp. 891-900 ◽  
Author(s):  
S M Friedman ◽  
M K Crow ◽  
J R Tumang ◽  
M Tumang ◽  
Y Q Xu ◽  
...  

While all known microbial superantigens are mitogenic for human peripheral blood lymphocytes (PBL), the functional response induced by Mycoplasma arthritidis-derived superantigen (MAM) is unique in that MAM stimulation of PBL consistently results in T cell-dependent B cell activation characterized by polyclonal IgM and IgG production. These immunostimulatory effects of MAM on the humoral arm of the human immune system warranted a more precise characterization of MAM-reactive human T cells. Using an uncloned MAM reactive human T cell line as immunogen, we have generated a monoclonal antibody (mAb) (termed C1) specific for the T cell receptor V beta gene expressed by the major fraction of MAM-reactive human T cells, V beta 17. In addition, a V beta 17- MAM-reactive T cell population exists, assessed by MAM, induced T cell proliferation and cytotoxic T cell activity. mAb C1 will be useful in characterizing the functional properties of V beta 17+ T cells and their potential role in autoimmune disease.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2145
Author(s):  
Pedro Flores-Villanueva ◽  
Navid Sobhani ◽  
Xu Wang ◽  
Yong Li

Major histocompatibility complex class I-related (MR1) was first identified as a cell membrane protein involved in the development and expansion of a unique set of T cells expressing an invariant T-cell receptor (TCR) α-chain. These cells were initially discovered in mucosal tissues, such as the intestinal mucosa, so they are called mucosal-associated invariant T (MAIT) cells. MR1 senses the presence of intermediate metabolites of riboflavin and folic acid synthesis that have been chemically modified by the side-products of glycolysis, glyoxal or methylglyoxal. These modified metabolites form complexes with MR1 and translocate from the endoplasmic reticulum to the plasma membrane where MAIT cells’ TCRs recognize them. Recent publications report that atypical MR1-restricted cytotoxic T cells, differing from MAIT cells in TCR usage, antigen, and transcription factor profile, recognize an as yet unknown cancer-specific metabolite presented by MR1 in cancer cells. This metabolite may represent another class of neoantigens, beyond the neo-peptides arising from altered tumor proteins. In an MR1-dependent manner, these MR1-restricted T cells, while sparing noncancerous cells, kill many cancer cell lines and attenuate cell-line-derived and patient-derived xenograft tumors. As MR1 is monomorphic and expressed in a wide range of cancer tissues, these findings raise the possibility of universal pan-cancer immunotherapies that are dependent on cancer metabolites.


2007 ◽  
Vol 81 (22) ◽  
pp. 12670-12674 ◽  
Author(s):  
Douglas A. Bazdar ◽  
Scott F. Sieg

ABSTRACT Proliferation responses of naïve CD4+ T cells to T-cell receptor and interleukin-7 (IL-7) stimulation were evaluated by using cells from human immunodeficiency virus-positive (HIV+) donors. IL-7 enhanced responses to T-cell receptor stimulation, and the magnitude of this enhancement was similar in cells from healthy controls and from HIV+ subjects. The overall response to T-cell receptor stimulation alone or in combination with IL-7, however, was diminished among viremic HIV+ donors and occurred independent of antigen-presenting cells. Frequencies of CD127+ cells were related to the magnitudes of proliferation enhancement that were mediated by IL-7. Thus, IL-7 enhances but does not fully restore the function of naïve CD4+ T cells from HIV-infected persons.


Blood ◽  
2008 ◽  
Vol 112 (4) ◽  
pp. 1195-1204 ◽  
Author(s):  
Bence Rethi ◽  
Nancy Vivar ◽  
Stefano Sammicheli ◽  
Caroline Fluur ◽  
Nicolas Ruffin ◽  
...  

Abstract T-cell depletion associated with HIV infection or cytoreductive therapies triggers potential T-cell regenerative mechanisms such as peripheral T-lymphocyte expansion to weak antigenic stimuli and the increased availability of interleukin-7 (IL-7), a cytokine with potent antiapoptotic and proliferative activities. Deleterious mechanisms also associated with lymphopenia, such as increased Fas expression and apoptosis of T cell, however, may result in opposing effects. In this study, we show that Fas molecules, primarily associated with T-cell depletion in lymphopenic settings, may also contribute to compensatory T-cell expansion through transmitting costimulatory signals to suboptimally activated T cells. Proliferation of T lymphocytes in response to concomitant Fas and T-cell receptor (TCR) triggering was shown to be increased in HIV-infected individuals compared with noninfected controls. As IL-7 levels are often elevated in lymphopenic individuals in association with increased Fas expression, we analyzed whether IL-7 would influence Fas-mediated proliferative signals in T cells. We show that IL-7 is able to increase the efficacy of Fas to induce proliferation of suboptimally activated T cells. Thus, high IL-7 levels associated with lymphopenic conditions may simultaneously induce sensitivity to Fas-mediated apoptosis in nonactivated T cells and increase Fas-induced costimulatory signals in T cells recognizing low-affinity antigens.


1991 ◽  
Vol 3 (11) ◽  
pp. 1067-1075 ◽  
Author(s):  
Yoshihiro Watanabe ◽  
Tetsuo Sudo ◽  
Nagahiro Minato ◽  
Akio Ohnishi ◽  
Yoshimoto Katsura

2003 ◽  
Vol 77 (14) ◽  
pp. 7872-7879 ◽  
Author(s):  
Sallie R. Permar ◽  
William J. Moss ◽  
Judith J. Ryon ◽  
Daniel C. Douek ◽  
Mwaka Monze ◽  
...  

ABSTRACT Measles virus infects thymic epithelia, induces a transient lymphopenia, and impairs cell-mediated immunity, but thymic function during measles has not been well characterized. Thirty Zambian children hospitalized with measles were studied at entry, hospital discharge, and at 1-month follow-up and compared to 17 healthy children. During hospitalization, percentages of naïve (CD62L+, CD45RA+) CD4+ and CD8+ T lymphocytes decreased (P = 0.01 for both), and activated (HLA-DR+, CD25+, or CD69+) CD4+ and CD8+ T lymphocytes increased (P = 0.02 and 0.03, respectively). T-cell receptor rearrangement excision circles (TRECs) in measles patients were increased in CD8+ T cells at entry compared to levels at hospital discharge (P = 0.02) and follow-up (P = 0.04). In CD4+ T cells, the increase in TRECS occurred later but was more sustained. At discharge, TRECs in CD4+ T cells (P = 0.05) and circulating levels of interleukin-7 (P = 0.007) were increased compared to control values and remained elevated for 1 month, similar to observations in two measles virus-infected rhesus monkeys. These findings suggest that a decrease in thymic output is not the cause of the lymphopenia and depressed cellular immunity associated with measles.


2006 ◽  
Vol 203 (4) ◽  
pp. 897-906 ◽  
Author(s):  
Megan MacLeod ◽  
Mark J. Kwakkenbos ◽  
Alison Crawford ◽  
Sheila Brown ◽  
Brigitta Stockinger ◽  
...  

Secondary T cell responses are enhanced because of an expansion in numbers of antigen-specific (memory) cells. Using major histocompatibility complex class II tetramers we have tracked peptide-specific endogenous (non–T cell receptor transgenic) CD4 memory T cells in normal and in costimulation-deficient mice. CD4 memory T cells were detectable after immunization for more than 200 days, although decay was apparent. Memory cells generated in CD40 knockout mice by immunization with peptide-pulsed wild-type dendritic cells survived in the absence of CD40 and proliferated when boosted with peptide (plus adjuvant) in a CD40-independent fashion. However, differentiation of the memory cells into cytokine-producing effector cells did not occur in the absence of CD40. The data indicate that memory cells can be generated without passing through the effector cell stage.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Nathan Schoettler ◽  
Cara L Hrusch ◽  
Kelly M Blaine ◽  
Anne I Sperling ◽  
Carole Ober

Abstract Antigen-specific memory T cells persist for years after exposure to a pathogen and provide effective recall responses. Many memory T cell subsets have been identified and differ in abundance throughout tissues. This study focused on CD4 and CD8 memory T cells from paired human lung and lung draining lymph node (LDLN) samples and identified substantial differences in the transcriptional landscape of these subsets, including higher expression of an array of innate immune receptors in lung T cells which were further validated by flow cytometry. Using T cell receptor analysis, we determined the clonal overlap between memory T cell subsets within the lung and within the LDLN, and this was greater than the clonal overlap observed between memory T cell subsets compared across tissues. Our results suggest that lung and LDLN memory T cells originate from different precursor pools, recognize distinct antigens and likely have separate roles in immune responses.


2014 ◽  
Vol 32 (26_suppl) ◽  
pp. 64-64 ◽  
Author(s):  
David B. Page ◽  
Jianda Yuan ◽  
Arielle Ginsberg ◽  
Zhiwan Dong ◽  
Phillip Wong ◽  
...  

64 Background: In mice, tumor cryo plus immunologic checkpoint blockade generates tumor antigen release, proliferation of tumor-specific T-cells, and enhanced survival. We previously demonstrated in a pilot study that pre-op cryo+ipi is well tolerated in women with ESBC and did not delay standard of care surgical resection. Here, we analyze pilot study tissue and blood to explore immune response. Methods: 18 ESBC patients (pts) were treated with preop cryo (n=6), single-dose ipi 10mg/kg (n=6), or cryo+ipi (n=6). As a potential surrogate for tumor immunogenicity, baseline T-cell tumor infiltrating lymphocyte (TIL) density was evaluated by T-cell receptor quantitative DNA sequencing. We explored the systemic immune response to cryo and/or ipi using previously described laboratory measures including inducible costimulator (ICOS, a marker of activated CD4+ T-cells) and plasma interferon gamma (IFNγ, a cytokine associated with T-cell activity). Results: Of the 18 study pts, 13 pts had hormone receptor-positive (HR+) disease, 2 pts had HER2+ disease (both treated with ipi alone) and 3 pts had triple-negative (TN) disease (1 ipi alone and 2 cryo/ipi). Baseline TIL density was highly variable overall (range 2-30%), but higher in HER2+ and TN pts (median 15%) compared with HR+ pts (median 5%). Sustained >2-fold elevations in ICOS and IFNγ were observed in the majority of cryo+ipi pts 30 days following treatment (ICOS: 5/6 pts; IFNγ: 4/6 pts), but in the minority of ipi pts (ICOS: 2/6 pts; IFNγ: 2/6 pts) or cryo pts (ICOS: 0/6 pts; IFNγ: 0/6 pts). Sustained ICOS and IFNγ elevations were observed regardless of baseline TIL density. Conclusions: Cryo+ipi was more likely to induce systemic immune activation compared to cryo or ipi alone. These potentially beneficial immune effects were observed in both HR+ and HR- subtypes, as well as in tumors with low or high baseline TIL density. These data support further studies of cryo+ipi in ESBC across HR+ and HR- subtypes, as well as in tumors that do not appear immunogenic at baseline.


2001 ◽  
Vol 194 (8) ◽  
pp. 1043-1052 ◽  
Author(s):  
Phillip D. Holler ◽  
Alice R. Lim ◽  
Bryan K. Cho ◽  
Laurie A. Rund ◽  
David M. Kranz

T cells are activated by binding of the T cell receptor (TCR) to a peptide-major histocompatibility complex (MHC) complex (pMHC) expressed on the surface of antigen presenting cells. Various models have predicted that activation is limited to a narrow window of affinities (or dissociation rates) for the TCR–pMHC interaction and that above or below this window, T cells will fail to undergo activation. However, to date there have not been TCRs with sufficiently high affinities in order to test this hypothesis. In this report we examined the activity of a CD8-negative T cell line transfected with a high affinity mutant TCR (KD = 10 nM) derived from cytotoxic T lymphocyte clone 2C by in vitro engineering. The results show that despite a 300-fold higher affinity and a 45-fold longer off-rate compared with the wild-type TCR, T cells that expressed the mutant TCRs were activated by peptide. In fact, activation could be detected at significantly lower peptide concentrations than with T cells that expressed the wild-type TCR. Furthermore, binding and functional analyses of a panel of peptide variants suggested that pMHC stability could account for apparent discrepancies between TCR affinity and T cell activity observed in several prior studies.


Sign in / Sign up

Export Citation Format

Share Document