scholarly journals Gene-Edited Interleukin CAR-T Cells Therapy in the Treatment of Malignancies: Present and Future

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhengchao Zhang ◽  
Lele Miao ◽  
Zhijian Ren ◽  
Futian Tang ◽  
Yumin Li

In recent years, chimeric antigen receptor T cells (CAR-T cells) have been faced with the problems of weak proliferation and poor persistence in the treatment of some malignancies. Researchers have been trying to perfect the function of CAR-T by genetically modifying its structure. In addition to the participation of T cell receptor (TCR) and costimulatory signals, immune cytokines also exert a decisive role in the activation and proliferation of T cells. Therefore, genetic engineering strategies were used to generate cytokines to enhance tumor killing function of CAR-T cells. When CAR-T cells are in contact with target tumor tissue, the proliferation ability and persistence of T cells can be improved by structurally or inductively releasing immunoregulatory molecules to the tumor region. There are a large number of CAR-T cells studies on gene-edited cytokines, and the most common cytokines involved are interleukins (IL-7, IL-12, IL-15, IL-18, IL-21, IL-23). Methods for the construction of gene-edited interleukin CAR-T cells include co-expression of single interleukin, two interleukin, interleukin combined with other cytokines, interleukin receptors, interleukin subunits, and fusion inverted cytokine receptors (ICR). Preclinical and clinical trials have yielded positive results, and many more are under way. By reading a large number of literatures, we summarized the functional characteristics of some members of the interleukin family related to tumor immunotherapy, and described the research status of gene-edited interleukin CAR-T cells in the treatment of malignant tumors. The objective is to explore the optimized strategy of gene edited interleukin-CAR-T cell function.

2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A26.2-A27
Author(s):  
M Seifert ◽  
M Benmebarek ◽  
B Cadilha ◽  
J Jobst ◽  
J Dörr ◽  
...  

BackgroundDespite remarkable response rates mediated by anti-CD19 chimeric antigen receptor (CAR) T cells in selected B cell malignancies, CAR T cell therapy still lacks efficacy in the vast majority of tumors. A substantial limiting factor of CAR T cell function is the immunosuppressive tumor microenvironment. Among other mechanisms, the accumulation of adenosine within the tumor can contribute to disease progression by suppressing anti-tumor immune responses. Adenosine 2a- and 2b-receptor (A2A and A2B)-mediated cAMP build-up suppresses T cell effector functions. In the present study we hypothesize, that combination therapy with the selective A2A/A2B dual antagonist AB928 (etrumadenant) enhances CAR T cell efficacy.Materials and MethodsSecond generation murine (anti-EPCAM) and human (anti-MSLN) CAR constructs, containing intracellular CD28 and CD3ζ domains, were fused via overlap extension PCR cloning. Murine or human T cells were retrovirally transduced to stably express the CAR constructs. A2A/A2B signaling in CAR T cells was analyzed by phospho-specific flow cytometry of CREB (pS133)/ATF-1 (pS63). CAR T cell activation was quantified by flow cytometry and enzyme-linked immunosorbent assay (ELISA) of IFN-γ, IL-2 and TNF-α. CAR T cell proliferation was assessed by flow cytometry. CAR T cell cytotoxicity was assessed by impedance based real-time cell analysis.ResultsAB928 protected murine CAR T cells from cAMP response element-binding protein (CREB) phosphorylation in the presence of stable adenosine analogue 5′-N-ethylcarboxamidoadenosine (NECA). NECA inhibited antigen-dependent CAR T cell cytokine secretion in response to four murine tumor cell lines. CAR T cell-mediated tumor cell lysis as well as proliferation were decreased in the presence of NECA or adenosine. Importantly, AB928 fully restored CAR T cell cytotoxicity, proliferation, and cytokine secretion in a dose dependent manner. Further, AB928 also restored antigen dependent cytokine secretion of human CAR T cells in the presence of NECA.ConclusionsHere we used the A2A/A2B dual antagonist AB928 to overcome adenosine-mediated suppression of CAR T cells. We found that AB928 enhanced important CAR T cell effector functions in the presence of the adenosine analogue, suggesting that combination therapy with AB928 may improve CAR T cell efficacy. This study was limited to in vitro experiments. To confirm the relevance of our findings, this combination therapy must be further investigated in an in vivo setting.Disclosure InformationM. Seifert: None. M. Benmebarek : None. B. Cadilha : None. J. Jobst: None. J. Dörr: None. T. Lorenzini: None. D. Dhoqina: None. J. Zhang: None. J. Zhang: None. U. Schindler: E. Ownership Interest (stock, stock options, patent or other intellectual property); Modest; Amgen Inc., Arcus Biosciences. Other; Significant; Arcus Biosciences. S. Endres: None. S. Kobold: B. Research Grant (principal investigator, collaborator or consultant and pending grants as well as grants already received); Significant; Arcus Biosciences.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 44-44
Author(s):  
McKensie Collins ◽  
Weimin Kong ◽  
Inyoung Jung ◽  
Stefan M Lundh ◽  
J. Joseph Melenhorst

Chronic Lymphocytic Leukemia (CLL) is a B cell malignancy that accounts for nearly 1/3rd of adult leukemia diagnoses in the Western world. Conventional chemo-immunotherapies initially control progression, but in the absence of curative options patients ultimately succumb to their disease. Chimeric Antigen Receptor (CAR) T cell therapy is potentially curative, but only 26% of CLL patients have a complete response. CLL-stimulated T cells have reduced effector functions and B-CLL cells themselves are believed to be immunosuppressive. Our work demonstrates that insufficient activation of CAR T cells by CLL cells mediates some of these effects and that the results are conserved between ROR1- and CD19-targeting CARs. Results: In this study we used an in vitro system to model the in vivo anti-tumor response in which CAR T cells serially engage with CLL cells. Multiple stimulations of CD19 or ROR1-targeting CAR T cells with primary CLL cells recapitulated many aspects of known T cell dysfunction including reduced proliferation, cytokine production, and activation. While the initial stimulation induced low level proliferation, subsequent stimulations failed to elicit additional effector functions. We further found that these functional defects were not permanent, and that CAR T cell function could be restored by switching to a stimulus with an aAPC (artificial Antigen Presenting Cell) control cell line. The aAPCs are well-characterized as potent stimulators of CAR T cell effector responses. Flow cytometry revealed that CLL-stimulated CAR T cells retained a non-activated, baseline differentiation profile, suggesting that CLL cells fail to stimulate CAR T cells rather than rendering them non-functional. One mechanism that could dampen activation is immune suppression. We assessed this at a high level by stimulating CAR T cells with CLL cells and aAPCs mixed at known ratios. However, even cultures containing 75% CLL cells stimulated proliferation and cytokine production. Extensive immune-phenotyping revealed high level expression of the IL-2 Receptor on 90% (18/20) of the B-CLL cells tested. Since cytokine sinking via IL-2 receptor expression is a well-known mechanism of regulatory T cell suppression, we hypothesized that CLL cells similarly sink IL-2, blunting T cell activation. To test this, we supplemented IL-2 into CLL/CAR T cell co-cultures and showed that this rescued proliferation but only partially restored cytokine production. In contrast to our hypothesis, analysis of cytokine production by flow cytometry showed that CLL-stimulated CAR T cells did not produce IL-2 following a 6- or 12-hour stimulus, but TNFα was expressed after 12-hours. Similarly, CAR T cell degranulation, a prerequisite for target cell lysis was triggered after CLL recognition. These data again suggested that CLL cells insufficiently stimulate CAR T cell cytokine production, but also showed that cytolytic activity against CLL cells is intact. We further proposed that CLL cells express insufficient levels of co-stimulatory and adhesion molecules to activate CAR T cells. Flow cytometry showed that most CLL cells expressed co-stimulatory and adhesion molecules at low levels; we hypothesized that up-regulating these molecules would enhance CAR T cell targeting of CLL cells. CLL cells were activated with CD40L and IL-4, which increased expression of CD54, CD58, CD80, and CD86. Stimulating CAR T cells with activated CLL cells enhanced CAR T cell proliferation and induced cell conjugate formation, indicating cell activation. Therefore, improving CLL stimulatory capacity can rescue T cell dysfunctions. To assess whether IL-2 addition and CD40 ligation were synergistic, we combined the two assays; however, we saw no additional improvement over IL-2 addition alone, suggesting that the two interventions may act upon the same pathway. Importantly, we also showed that rescue of CAR T cell function via IL-2 addition or CD40 ligation was not CAR-specific, as we observed the functional defects and subsequent rescue with both a ROR1-targeting CAR and the gold standard CD19-targeting CAR. Conclusions: Together, these data show that CAR T cell "defects" in CLL are actually insufficient activation, and improving the stimulatory capacity of CLL cells may enable better clinical responses. Further, this effect is not CAR-specific and these results may therefore be broadly applicable to multiple therapies for this disease. Disclosures Melenhorst: IASO Biotherapeutics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Kite Pharma: Research Funding; Novartis: Other: Speaker, Research Funding; Johnson & Johnson: Consultancy, Other: Speaker; Simcere of America: Consultancy; Poseida Therapeutics: Consultancy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3032-3032
Author(s):  
Arantxa Romero-Toledo ◽  
Robin Sanderson ◽  
John G. Gribben

The complex crosstalk between malignant chronic lymphocytic leukemia (CLL) cells and the tumor microenvironment (TME) is not fully understood. CLL is associated with an inflammatory TME and T cells exhibit exhaustion and multiple functional defects, fully recapitulated in Eµ-TCL1 (TCL1) mice and induced in healthy mice by adoptive transfer (AT) of murine CLL cells, making it an ideal model to test novel immunotherapies for this disease. Myeloid-derived suppressor cells (MDSCs), a non-leukemic cell type within the TME, are immature myeloid cells with the ability to suppress T cell function and promote Treg expansion. In humans, CLL cells can induce conversion of monocytes to MDSCs provoking their accumulation in peripheral blood (PB). MDSCs include two major subsets granulocytic (Gr) and monocytic (M)-MDSC. In mice, Gr-MDSCs are defined as CD11b+Ly6G+Ly6Clo and M-MDSC as CD11b+Ly6G-Ly6Chi. Both murine and human MDSCs express BTK. We observed that in CLL-bearing mice, MDSCs cells are lost in PB as disease progresses. Treatment with both BTK inhibitors (BTKi), ibrutinib (Ibr) and acalabrutinib (Acala), result in shift of T cell function from Th2 towards Th1 polarity and increase MDSC populations in vivo. We aimed to determine whether combination treatment with BTKi and chimeric antigen receptor (CAR) T cells renders recovery of the MDSC population in CLL-bearing mice. To address this question we designed a two-part experiment, aiming to mimic the clinically relevant scenario of pre-treatment of CLL with BTKi to improve CAR T cell function. Part 1 of our experiment consisted of 4 groups (n=12) of 2.5 month old C57/Bl6 mice. Three groups had AT with 30x106 TCL1 splenocytes. A fourth group of WT mice remained CLL-free as a positive control and donors for WT T cells. When PB CLL load reached >10% (day 14) animals were randomized to either Ibr or Acala at 0.15 mg/l in 2% HPBC or no treatment for 21 days. All animals from part 1 were culled at day 35 post-AT and splenic cells were isolated, analyzed and used to manufacture CAR T cells. WT, CLL, Ibr and Acala treated T cells were activated and transduced with a CD19-CD28 CAR to treat mice in part 2. Here, 50 WT mice were given AT with 20x106 TCL1 splenocytes for CLL engraftment. All mice were injected with lymphodepleting cyclophosphamide (100mg/kg IP) one day prior to IV CAR injection. At day 21 post-AT, mice were treated with WT CAR, CLL CAR, IbrCAR, AcalaCAR or untransduced T cells. MDSC sub-populations were monitored weekly in PB and SP were analysed by flow cytometry. As malignant CD19+CD5+ cells expands in PB, the overall myeloid (CD19-CD11b+) cell population was not affected, but MDSCs significantly decreased (p<0.0001). Treatment with Acala, but not Ibr restores total MDSCs. However, MDSC impairment occurs in the Gr- but not M- MDSC population and both Acala and Ibr restores this population (Figure 1a). When we examined the spleen, treatment with both Ibr (p<0.001) and Acala (p<0.001) reduced CD5+CD19+ cells, whereas neither BTKi affected the overall myeloid (CD19-CD11b+) cell population. Gr-MDSCs were restored by both treatments whilst M-MDSCs were only restored after Ibr treatment (p<0.001 in each case). In part 2 of this experiment we observed that treatment with all CAR-T cell groups provokes the clearance of all CD19+CD5+ cells. The overall CD19-CD11b+ population stays the same across all mice groups 35 days after treatment in PB with any group of CAR and untransduced T cells. Overall MDSC population is maintained following all CAR T cells compared to CLL-bearing mice (p<0.0001) and it is the Gr- but not the M- MDSC population which is recovered in PB (Figure 1b). These parts of the experiments can of course be influenced by treatment with cyclophosphamide. We conclude that novel therapies for CLL treatment have an effect not only in CLL cells but also in non-malignant cell components of the TME. In this animal model of CLL, the rapid expansion of CLL cells in PB and secondary lymphoid organs provokes loss of MDSC, particularly the Gr-MDSC subpopulation is affected. Treatment with BTKi and CAR T cells provokes clearance of CLL cells in PB and spleen allowing MDSC recovery; suggesting this may be BTK and ITK independent. We continue to explore secondary lymphoid organs to further characterize the shift of the CLL microenvironment from an immunosuppressive to an immune effective one and its impact on immune function in this model. Disclosures Sanderson: Kite/Gilead: Honoraria. Gribben:Celgene: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Abbvie: Consultancy, Honoraria, Research Funding; Acerta/Astra Zeneca: Consultancy, Honoraria, Research Funding.


2016 ◽  
Vol 44 (2) ◽  
pp. 412-418 ◽  
Author(s):  
Oladapo O. Yeku ◽  
Renier J. Brentjens

Chimaeric antigen receptor (CAR) T-cells are T-cells that have been genetically modified to express an artificial construct consisting of a synthetic T-cell receptor (TCR) targeted to a predetermined antigen expressed on a tumour. Coupling the T-cell receptor to a CD3ζ signalling domain paved the way for first generation CAR T-cells that were efficacious against cluster of differentiation (CD)19-expressing B-cell malignancies. Optimization with additional signalling domains such as CD28 or 4-1BB in addition to CD3ζ provided T-cell activation signal 2 and further improved the efficacy and persistence of these second generation CAR T-cells. Third generation CAR T-cells which utilize two tandem costimulatory domains have also been reported. In this review, we discuss a different approach to optimization of CAR T-cells. Through additional genetic modifications, these resultant armored CAR T-cells are typically modified second generation CAR T-cells that have been further optimized to inducibly or constitutively secrete active cytokines or express ligands that further armor CAR T-cells to improve efficacy and persistence. The choice of the ‘armor’ agent is based on knowledge of the tumour microenvironment and the roles of other elements of the innate and adaptive immune system. Although there are several variants of armored CAR T-cells under investigation, here we focus on three unique approaches using interleukin-12 (IL-12), CD40L and 4-1BBL. These agents have been shown to further enhance CAR T-cell efficacy and persistence in the face of a hostile tumour microenvironment via different mechanisms.


Author(s):  
Dana Stenger ◽  
Tanja Stief ◽  
Theresa Käuferle ◽  
Semjon Manuel Willier ◽  
Felicitas Rataj ◽  
...  

2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii60-iii60
Author(s):  
G Diamant ◽  
H Simchony ◽  
T Shiloach ◽  
A Globerson-Levin ◽  
L Gasri Plotnitsky ◽  
...  

Abstract BACKGROUND TTFields has the ability to induce immunogenic cell death (ICD). As immunotherapy and TTFields have different mechanisms of action (MOA), combining these therapies is a rational approach. Contrarily, TTFields may interfere with immune functions critical for effective T cell function. MATERIAL AND METHODS We cultured T cells from healthy donors’ peripheral blood or from viably dissociated glioblastoma samples under normal or TTFields conditions, with or without superantigen-stimulation. In order to assess T cell responses we used eight-color flow cytometry by monitoring select pivotal antitumoral functions: proliferation (CFSE), IFNγ secretion, cytotoxic degranulation (CD107a), activation/exhaustion (PD1) and viability. Evaluation of direct cytotoxicity was done by using chimeric antigen receptor (CAR) T cells. RESULTS TTFields did not change T cell activation rates for all evaluated functions with the exception of reduced proliferation - in line with TTFields’ MOA. TTFields substantially reduced the viability of activated proliferating T cells, moderately affected activated nonproliferating T cells and had almost no effect on the viability of non-activated cells. Polyfunctionality analysis of T-cells, associated with effective antitumoral responses, demonstrated that under TTFields, the activated non-proliferating T cells retained polyfunctional capabilities. PD1-expressing TILs, a subset containing most of the tumor antigen-specific TILs, exhibited unaltered viability and functionality under TTFields. CAR T-cells, which utilize the same killing machinery as unmodified T cells, exhibited unaltered cytotoxic capability under TTFields. Immunohistochemical evaluation of GBM samples before TTFields treatment and after recurrence showed that some patients had accommodated large increases in their CD8 and CD4 counts. RNA-Seq performed on GBM samples from 6 standardly-treated and 6 TTFields-treated patients before treatment and after recurrence. The data shows differential increases in TTFields-treated patients to controls, in the expression of immune genes associated with favorable prognosis (e.g. t-bet, NKG2D, ICOS-L, CD70) and concurrent decreases in genes associated with poor prognosis (e.g. IL4, TSLP, various complement genes). CONCLUSION The preclinical data showed that all antitumoral T cell functions examined, but proliferation, were unhindered by TTFields. The clinical data showed that TTFields may shift treated tumors to a state more conducive of antitumoral immune responses. Our findings support the further preclinical and clinical investigation into combining TTFields with immunotherapy.


2021 ◽  
Author(s):  
Taylor L Hickman ◽  
Eugene Choi ◽  
Kathleen R Whiteman ◽  
Sujatha Muralidharan ◽  
Tapasya Pai ◽  
...  

Purpose: The solid tumor microenvironment (TME) drives T cell dysfunction and inhibits the effectiveness of immunotherapies such as chimeric antigen receptor-based T cell (CAR T) cells. Early data has shown that modulation of T cell metabolism can improve intratumoral T cell function in preclinical models. Experimental Design: We evaluated GPC3 expression in human normal and tumor tissue specimens. We developed and evaluated BOXR1030, a novel CAR T therapeutic co-expressing glypican-3 (GPC3)-targeted CAR and exogenous glutamic-oxaloacetic transaminase 2 (GOT2) in terms of CAR T cell function both in vitro and in vivo. Results: Expression of tumor antigen GPC3 was observed by immunohistochemical staining in tumor biopsies from hepatocellular carcinoma, liposarcoma, squamous lung cancer, and Merkel cell carcinoma patients. Compared to control GPC3 CAR alone, BOXR1030 (GPC3-targeted CAR T cell that co-expressed GOT2) demonstrated superior in vivo efficacy in aggressive solid tumor xenograft models, and showed favorable attributes in vitro including an enhanced cytokine production profile, a less-differentiated T cell phenotype with lower expression of stress and exhaustion markers, an enhanced metabolic profile and increased proliferation in TME-like conditions. Conclusions: Together, these results demonstrated that co-expression of GOT2 can substantially improve the overall antitumor activity of CAR T cells by inducing broad changes in cellular function and phenotype. These data show that BOXR1030 is an attractive approach to targeting select solid tumors. To this end, BOXR1030 will be explored in the clinic to assess safety, dose-finding, and preliminary efficacy (NCT05120271).


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi122-vi122
Author(s):  
Linchun Jin ◽  
Alicia Hou ◽  
Haipeng Tao ◽  
Aida Karachi ◽  
Meng Na ◽  
...  

Abstract BACKGROUND Glioblastoma (GBM) is a refractory brain tumor that desperately needs new therapeutic interventions. Our group identified CD70 as a novel target of CAR-T therapy for this malignancy. We demonstrate that CD70 is overexpressed by low-/high-grade gliomas and associated with poor survival for patients; CD70 promotes CD8 specific cell death and tumor-associated macrophage infiltration in gliomas. The CD70 CAR (using CD27, a natural costimulatory receptor of T cells as an antigen-binding region) T cells can efficiently eradicate CD70 positive tumors in syngeneic and xenograft mouse models. OBJECTIVE To evaluate the properties of CD70 CAR-transduced T cells in GBM treatment. METHODS CD70 CAR or IL13Rα2 CAR was linked with fluorescent reporter gene EGFP, and cloned into a retroviral vector (pMSGV8). In vitro T cell culture and flow cytometry were used to evaluate the self-enrichment property and susceptibility to TCR stimulation of the CAR T cells. KI67, Bcl-2, CD70 gene expression was tested by qPCR to measure the proliferation/apoptosis properties of the CAR T cells. Cytokine profile was analyzed by ELISA. The anti-tumor response was evaluated using Xenograft mouse models. RESULTS Compared with IL13Rα2 CAR T cells, the frequency of CD70 CAR T cells was significantly increased 3 weeks post transduction, and approximately 100 to 150-fold CD70 CAR T cell expansion without additional stimuli was achieved in vitro. The expanded CD70 CAR T cells were mostly (up to 85%) CD8+ T cells three weeks post CAR transduction. Enhanced proliferative capacity and production of IL-2, IFN-γ, and TNF-α of the CD70 CAR-transduced T cells upon anti-CD3/CD28 stimulation were also revealed. Results from animal models show that the CD70 CAR T cells present superior in vivo persistence and antitumor efficacy. CONCLUSION We show the auto-stimulative property, as well as superior T cell function and antitumor efficacy of CD70 CAR T cells in GBM models.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1182 ◽  
Author(s):  
Kento Fujiwara ◽  
Ayaka Tsunei ◽  
Hotaka Kusabuka ◽  
Erika Ogaki ◽  
Masashi Tachibana ◽  
...  

Chimeric antigen receptor (CAR)-T cells have demonstrated significant clinical potential; however, their strong antitumor activity may cause severe adverse effects. To ensure efficacy and safe CAR-T cell therapy, it is important to understand CAR’s structure–activity relationship. To clarify the role of hinge and transmembrane domains in CAR and CAR-T cell function, we generated different chimeras and analyzed their expression levels and antigen-specific activity on CAR-T cells. First, we created a basic CAR with hinge, transmembrane, and signal transduction domains derived from CD3ζ, then we generated six CAR variants whose hinge or hinge/transmembrane domains originated from CD4, CD8α, and CD28. CAR expression level and stability on the T cell were greatly affected by transmembrane rather than hinge domain. Antigen-specific functions of most CAR-T cells depended on their CAR expression levels. However, CARs with a CD8α- or CD28-derived hinge domain showed significant differences in CAR-T cell function, despite their equal expression levels. These results suggest that CAR signaling intensity into T cells was affected not only by CAR expression level, but also by the hinge domain. Our discoveries indicate that the hinge domain regulates the CAR signaling threshold and the transmembrane domain regulates the amount of CAR signaling via control of CAR expression level.


2019 ◽  
Vol 20 (23) ◽  
pp. 5821 ◽  
Author(s):  
Sitaram ◽  
Uyemura ◽  
Malarkannan ◽  
Riese

It is well established that extracellular proteins that negatively regulate T cell function, such as Cytotoxic T-Lymphocyte-Associated protein 4 (CTLA-4) and Programmed Cell Death protein 1 (PD-1), can be effectively targeted to enhance cancer immunotherapies and Chimeric Antigen Receptor T cells (CAR-T cells). Intracellular proteins that inhibit T cell receptor (TCR) signal transduction, though less well studied, are also potentially useful therapeutic targets to enhance T cell activity against tumor. Four major classes of enzymes that attenuate TCR signaling include E3 ubiquitin kinases such as the Casitas B-lineage lymphoma proteins (Cbl-b and c-Cbl), and Itchy (Itch), inhibitory tyrosine phosphatases, such as Src homology region 2 domain-containing phosphatases (SHP-1 and SHP-2), inhibitory protein kinases, such as C-terminal Src kinase (Csk), and inhibitory lipid kinases such as Src homology 2 (SH2) domain-containing inositol polyphosphate 5-phosphatase (SHIP) and Diacylglycerol kinases (DGKs). This review describes the mechanism of action of eighteen intracellular inhibitory regulatory proteins in T cells within these four classes, and assesses their potential value as clinical targets to enhance the anti-tumor activity of endogenous T cells and CAR-T cells.


Sign in / Sign up

Export Citation Format

Share Document