scholarly journals Bacteriophage T4 Vaccine Platform for Next-Generation Influenza Vaccine Development

2021 ◽  
Vol 12 ◽  
Author(s):  
Mengling Li ◽  
Pengju Guo ◽  
Cen Chen ◽  
Helong Feng ◽  
Wanpo Zhang ◽  
...  

Developing influenza vaccines that protect against a broad range of viruses is a global health priority. Several conserved viral proteins or domains have been identified as promising targets for such vaccine development. However, none of the targets is sufficiently immunogenic to elicit complete protection, and vaccine platforms that can enhance immunogenicity and deliver multiple antigens are desperately needed. Here, we report proof-of-concept studies for the development of next-generation influenza vaccines using the bacteriophage T4 virus-like particle (VLP) platform. Using the extracellular domain of influenza matrix protein 2 (M2e) as a readout, we demonstrate that up to ~1,281 M2e molecules can be assembled on a 120 x 86 nanometer phage capsid to generate M2e-T4 VLPs. These M2e-decorated nanoparticles, without any adjuvant, are highly immunogenic, stimulate robust humoral as well as cellular immune responses, and conferred complete protection against lethal influenza virus challenge. Potentially, additional conserved antigens could be incorporated into the M2e-T4 VLPs and mass-produced in E. coli in a short amount of time to deal with an emerging influenza pandemic.

2021 ◽  
Author(s):  
Mengling Li ◽  
Pengju Guo ◽  
Cen Chen ◽  
Helong Feng ◽  
Wanpo Zhang ◽  
...  

Developing influenza vaccines that protect against a broad range of viruses is a public health priority, and several conserved viral proteins or domains have been identified as promising targets for such vaccine development. However, none of the targets is immunogenic, and vaccine platforms that can incorporate multiple antigens with enhanced immunogenicity are desperately needed. In this study, we provided proof-of-concept for the development of next-generation influenza vaccine using T4 phage virus-like particle (VLP) platform. With extracellular domain of influenza matrix protein 2 (M2e) as a readout, we showed that more than 1,280 M2e molecules can be assembled on a 120×90 nanometer phage capsid to form T4-M2e VLPs, which are highly immunogenic and induced complete protection against influenza virus challenge without any addition adjuvant. Potentially, additional conserved antigens or molecular adjuvants could be incorporated into the T4-M2e VLPs to customize influenza vaccines to address different issues. All the components of T4 VLP vaccines can be mass-produced in E. coli in a short time, therefore, providing a rapid approach to deal with the potential influenza pandemic.


Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1409
Author(s):  
Wasim A. Prates-Syed ◽  
Lorena C. S. Chaves ◽  
Karin P. Crema ◽  
Larissa Vuitika ◽  
Aline Lira ◽  
...  

Virus-like particles (VLPs) are a versatile, safe, and highly immunogenic vaccine platform. Recently, there are developmental vaccines targeting SARS-CoV-2, the causative agent of COVID-19. The COVID-19 pandemic affected humanity worldwide, bringing out incomputable human and financial losses. The race for better, more efficacious vaccines is happening almost simultaneously as the virus increasingly produces variants of concern (VOCs). The VOCs Alpha, Beta, Gamma, and Delta share common mutations mainly in the spike receptor-binding domain (RBD), demonstrating convergent evolution, associated with increased transmissibility and immune evasion. Thus, the identification and understanding of these mutations is crucial for the production of new, optimized vaccines. The use of a very flexible vaccine platform in COVID-19 vaccine development is an important feature that cannot be ignored. Incorporating the spike protein and its variations into VLP vaccines is a desirable strategy as the morphology and size of VLPs allows for better presentation of several different antigens. Furthermore, VLPs elicit robust humoral and cellular immune responses, which are safe, and have been studied not only against SARS-CoV-2 but against other coronaviruses as well. Here, we describe the recent advances and improvements in vaccine development using VLP technology.


2020 ◽  
Author(s):  
Aditya Ambati ◽  
Guo Luo ◽  
Elora Pradhan ◽  
Jacob Louis ◽  
Ling Lin ◽  
...  

AbstractThe onset of narcolepsy, an irreversible sleep disorder, has been associated with 2009 influenza pandemic (pH1N1) infections in China, and with ASO3-adjuvanted pH1N1 vaccinations using Pandemrix in Europe. Intriguingly, however, the increased incidence was only observed following vaccination with Pandemrix but not Arepanrix in Canada. In this study, the mutational burden of actual vaccine lots of Pandemrix (n=6) and Arepanrix (n=5) sourced from Canada, and Northern Europe were characterized by mass spectrometry. The four most abundant influenza proteins across both vaccines were nucleoprotein NP, hemagglutinin HA, matrix protein M1, with the exception that Pandemrix harbored a significantly increased proportion of neuraminidase NA (7.5%) as compared to Arepanrix (2.6%). Most significantly, 17 motifs in HA, NP, and M1 harbored mutations, which significantly differed in Pandemrix versus Arepanrix. Among these, a 6-fold higher deamidation of HA146 (N to D) in Arepanrix was found relative to Pandemrix, while NP257 (T to A) and NP424 (T to I) were increased in Pandemrix. DQ0602 binding and tetramer analysis with mutated epitopes were conducted in Pandemrix-vaccinated cases versus controls but were unremarkable. Pandemrix harbored lower mutational burden than Arepanrix, indicating higher similarity to wild-type 2009 pH1N1, which could explain differences in narcolepsy susceptibility amongst the vaccines.


2001 ◽  
Vol 75 (6) ◽  
pp. 2660-2664 ◽  
Author(s):  
Julie A. Wilson ◽  
Mary Kate Hart

ABSTRACT Cytotoxic T lymphocytes (CTLs) are proposed to be critical for protection from intracellular pathogens such as Ebola virus. However, there have been no demonstrations that protection against Ebola virus is mediated by Ebola virus-specific CTLs. Here, we report that C57BL/6 mice vaccinated with Venezuelan equine encephalitis virus replicons encoding the Ebola virus nucleoprotein (NP) survived lethal challenge with Ebola virus. Vaccination induced both antibodies to the NP and a major histocompatibility complex class I-restricted CTL response to an 11-amino-acid sequence in the amino-terminal portion of the Ebola virus NP. Passive transfer of polyclonal NP-specific antiserum did not protect recipient mice. In contrast, adoptive transfer of CTLs specific for the Ebola virus NP protected unvaccinated mice from lethal Ebola virus challenge. The protective CTLs were CD8+, restricted to the Db class I molecule, and recognized an epitope within amino acids 43 to 53 (VYQVNNLEEIC) in the Ebola virus NP. The demonstration that CTLs can prevent lethal Ebola virus infection affects vaccine development in that protective cellular immune responses may be required for optimal protection from Ebola virus.


2021 ◽  
Author(s):  
H. Christian Hong ◽  
Kwang Sung Kim ◽  
Shin Ae Park ◽  
Min Jeong Chun ◽  
Eun Young Hong ◽  
...  

AbstractIn addition to the traditional method of vaccine development, the mRNA coronavirus vaccine, which is attractive as a challenging vaccination, recently opened a new era in vaccinology. Here we describe the EG-COVID which is a novel liposome-based mRNA candidate vaccine that encodes the spike (S) protein of SARS-CoV-2 with 2P-3Q substitution in European variant. We developed the mRNA vaccine platform that can be lyophilized using liposome-based technology. Intramuscular injection of the EG-COVID elicited robust humoral and cellular immune response to SARS-CoV-2. Furthermore, sera obtained from mice successfully inhibited SARS-CoV-2 viral infection into Vero cells. We developed EG-COVID and found it to be effective based on in vitro data, and we plan to initiate a clinical trial soon. Since EG-COVID is a lyophilized mRNA vaccine that is convenient for transportation and storage, accessibility to vaccines will be significantly improved.


Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 630
Author(s):  
Aditya Ambati ◽  
Guo Luo ◽  
Elora Pradhan ◽  
Jacob Louis ◽  
Ling Lin ◽  
...  

The onset of narcolepsy, an irreversible sleep disorder, has been associated with 2009 influenza pandemic (pH1N1) infections in China, and with ASO3-adjuvanted pH1N1 vaccinations using Pandemrix in Europe. Intriguingly, however, the increased incidence was only observed following vaccination with Pandemrix but not Arepanrix in Canada. In this study, the mutational burden of actual vaccine lots of Pandemrix (n = 6) and Arepanrix (n = 5) sourced from Canada, and Northern Europe were characterized by mass spectrometry. The four most abundant influenza proteins across both vaccines were nucleoprotein NP, hemagglutinin HA, matrix protein M1, with the exception that Pandemrix harbored a significantly increased proportion of neuraminidase NA (7.5%) as compared to Arepanrix (2.6%). Most significantly, 17 motifs in HA, NP, and M1 harbored mutations, which significantly differed in Pandemrix versus Arepanrix. Among these, a 6-fold higher deamidation of HA146 (p.Asn146Asp) in Arepanrix was found relative to Pandemrix, while NP257 (p.Thr257Ala) and NP424 (p.Thr424Ile) were increased in Pandemrix. DQ0602 binding and tetramer analysis with mutated epitopes were conducted in Pandemrix-vaccinated cases versus controls but were unremarkable. Pandemrix harbored lower mutational burden than Arepanrix, indicating higher similarity to wild-type 2009 pH1N1, which could explain differences in narcolepsy susceptibility amongst the vaccines.


2020 ◽  
Vol 8 (11) ◽  
pp. 1745
Author(s):  
Steven Rockman ◽  
Karen L. Laurie ◽  
Simone Parkes ◽  
Adam Wheatley ◽  
Ian G. Barr

Vaccine development has been hampered by the long lead times and the high cost required to reach the market. The 2020 pandemic, caused by a new coronavirus (SARS-CoV-2) that was first reported in late 2019, has seen unprecedented rapid activity to generate a vaccine, which belies the traditional vaccine development cycle. Critically, much of this progress has been leveraged off existing technologies, many of which had their beginnings in influenza vaccine development. This commentary outlines the most promising of the next generation of non-egg-based influenza vaccines including new manufacturing platforms, structure-based antigen design/computational biology, protein-based vaccines including recombinant technologies, nanoparticles, gene- and vector-based technologies, as well as an update on activities around a universal influenza vaccine.


Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 574 ◽  
Author(s):  
Ekramy E. Sayedahmed ◽  
Ahmed Elkashif ◽  
Marwa Alhashimi ◽  
Suryaprakash Sambhara ◽  
Suresh K. Mittal

Ever since the discovery of vaccines, many deadly diseases have been contained worldwide, ultimately culminating in the eradication of smallpox and polio, which represented significant medical achievements in human health. However, this does not account for the threat influenza poses on public health. The currently licensed seasonal influenza vaccines primarily confer excellent strain-specific protection. In addition to the seasonal influenza viruses, the emergence and spread of avian influenza pandemic viruses such as H5N1, H7N9, H7N7, and H9N2 to humans have highlighted the urgent need to adopt a new global preparedness for an influenza pandemic. It is vital to explore new strategies for the development of effective vaccines for pandemic and seasonal influenza viruses. The new vaccine approaches should provide durable and broad protection with the capability of large-scale vaccine production within a short time. The adenoviral (Ad) vector-based vaccine platform offers a robust egg-independent production system for manufacturing large numbers of influenza vaccines inexpensively in a short timeframe. In this review, we discuss the progress in the development of Ad vector-based influenza vaccines and their potential in designing a universal influenza vaccine.


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 622
Author(s):  
Kassandra L. Carpio ◽  
Alan D. T. Barrett

The Flavivirus genus contains many important human pathogens, including dengue, Japanese encephalitis (JE), tick-borne encephalitis (TBE), West Nile (WN), yellow fever (YF) and Zika (ZIK) viruses. While there are effective vaccines for a few flavivirus diseases (JE, TBE and YF), the majority do not have vaccines, including WN and ZIK. The flavivirus nonstructural 1 (NS1) protein has an unusual structure–function because it is glycosylated and forms different structures to facilitate different roles intracellularly and extracellularly, including roles in the replication complex, assisting in virus assembly, and complement antagonism. It also plays a role in protective immunity through antibody-mediated cellular cytotoxicity, and anti-NS1 antibodies elicit passive protection in animal models against a virus challenge. Historically, NS1 has been used as a diagnostic marker for the flavivirus infection due to its complement fixing properties and specificity. Its role in disease pathogenesis, and the strong humoral immune response resulting from infection, makes NS1 an excellent target for inclusion in candidate flavivirus vaccines.


Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 739
Author(s):  
Mei Peng Tan ◽  
Wen Siang Tan ◽  
Noorjahan Banu Mohamed Alitheen ◽  
Wei Boon Yap

Discovery of conserved antigens for universal influenza vaccines warrants solutions to a number of concerns pertinent to the currently licensed influenza vaccines, such as annual reformulation and mismatching with the circulating subtypes. The latter causes low vaccine efficacies, and hence leads to severe disease complications and high hospitalization rates among susceptible and immunocompromised individuals. A universal influenza vaccine ensures cross-protection against all influenza subtypes due to the presence of conserved epitopes that are found in the majority of, if not all, influenza types and subtypes, e.g., influenza matrix protein 2 ectodomain (M2e) and nucleoprotein (NP). Despite its relatively low immunogenicity, influenza M2e has been proven to induce humoral responses in human recipients. Influenza NP, on the other hand, promotes remarkable anti-influenza T-cell responses. Additionally, NP subunits are able to assemble into particles which can be further exploited as an adjuvant carrier for M2e peptide. Practically, the T-cell immunodominance of NP can be transferred to M2e when it is fused and expressed as a chimeric protein in heterologous hosts such as Escherichia coli without compromising the antigenicity. Given the ability of NP-M2e fusion protein in inducing cross-protective anti-influenza cell-mediated and humoral immunity, its potential as a universal influenza vaccine is therefore worth further exploration.


Sign in / Sign up

Export Citation Format

Share Document