scholarly journals Cytochrome P450 26A1 Modulates the Polarization of Uterine Macrophages During the Peri-Implantation Period

2021 ◽  
Vol 12 ◽  
Author(s):  
Wen-Heng Ji ◽  
Dan-Dan Li ◽  
Dan-Ping Wei ◽  
Ai-Qin Gu ◽  
Ying Yang ◽  
...  

Uterine M1/M2 macrophages activation states undergo dynamic changes throughout pregnancy, and inappropriate macrophages polarization can cause adverse pregnancy outcomes, especially during the peri-implantation period. Our previous studies have confirmed that Cytochrome P450 26A1 (CYP26A1) can affect embryo implantation by regulating uterine NK cells and DCs. The aim of this study was to investigate whether CYP26A1 regulates the polarization of uterine macrophages in early pregnancy. Here, we observed that Cyp26a1 was significantly upregulated in M1 as compared with M2 of uterine macrophages, Raw264.7 and iBMDM. Knockdown of CYP26A1 in mice uterine significantly decreased the number of embryo implantation sites and the proportion of CD45+F4/80+CD206− M1-like uterine macrophages. Primary uterine macrophages treated with anti-CYP26A1 antibody expressed significantly lower levels of M1 markers Nos2, Il1b, Il6 and Tnf-a. In CYP26A1 knockout Raw264.7 cells, the protein levels of M1 markers TNF-α, IL-6 and CD86 were significantly decreased as compared with the wild type cells. Moreover, CYP26A1 deficiency decreased the ability to produce nitric oxide and increased the phagocytosis capacity of Raw264.7 cells under M1 stimulation state. The re-introduction of CYP26A1 partially reversed the polarization levels of M1 in CYP26A1 knockout Raw264.7 cells. CYP26A1 may regulate the polarization of uterine macrophages to M1 through Stap1 and Slc7a2. In summary, these results indicate that CYP26A1 plays a significant role in macrophage polarization, and knockdown of CYP26A1 can cause insufficient M1 polarization during the peri-implantation period, which has adverse effects on blastocyst implantation.

Reproduction ◽  
2014 ◽  
Vol 147 (6) ◽  
pp. 765-780 ◽  
Author(s):  
Anubha Joshi ◽  
Sahil Mahfooz ◽  
Vineet Kumar Maurya ◽  
Vijay Kumar ◽  
Chadchan Sangappa Basanna ◽  
...  

Pregnancy requires successful implantation of an embryo, which occurs during a restricted period defined as ‘receptivity of the endometrium’ and is influenced by the ovarian steroids progesterone and oestradiol. The role of poly(ADP-ribose)polymerase-1 (PARP1) in apoptosis is well established. However, it is also involved in cell differentiation, proliferation and tissue remodelling. Previous studies have described the presence of PARP in the uterus, but its exact role in embryo implantation is not yet elucidated. Hence, in this study, we studied the expression of PARP1 in the uterus during embryo implantation and decidualisation, and its regulation by ovarian steroids. Our results show upregulation of the native form of PARP1 (∼116 kDa) in the cytosolic and nuclear compartments of implantation and non-implantation sites at day 5 (0500 h), followed by downregulation at day 5 (1000 h), during the embryo implantation period. The transcript level of Parp1 was also augmented during day 5 (0500 h). Inhibition of PARP1 activity by the drug EB-47 decreased the number of embryo implantation sites and blastocysts at day 5 (1000 h). Further, cleavage of native PARP1 was due to the activity of caspase-3 during the peri-implantation stage (day 5 (0500 h)), and is also required for embryo implantation, as inhibition of its activity compromised blastocyst implantation. The native (∼116 kDa) and cleaved (∼89 kDa) forms of PARP1 were both elevated during decidualisation of the uterus. Furthermore, the expression level of PARP1 in the uterus was found to be under the control of the hormone oestrogen. Our results clearly demonstrate that PARP1 participates in the process of embryo implantation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoxiao Zhu ◽  
Qiang Guo ◽  
Jing Zou ◽  
Bin Wang ◽  
Zhen Zhang ◽  
...  

Macrophages, an important type of immune cells, are generally polarized to classically activated macrophage (M1) or alternatively activated macrophage (M2) to respond to environmental stimuli. Signal transducer and activator of transcription 1 (STAT1), a very important transcription factor, can promote M1 macrophage polarization. However, the mechanisms of regulating STAT1 in macrophage polarization remain unclear. In the present study, STAT1 was markedly elevated, however, miR-19a-3p was down-regulated in interferon (IFN)-γ and lipopolysaccharide (LPS) treated RAW264.7 cells, and dual-luciferase reporter assay identified that miR-19a-3p directly targeted STAT1 by binding to its 3′UTR. Up-regulated miR-19a-3p inhibited M1 polarization by targeting STAT1/interferon regulatory factor 1 (IRF1) and vice versa in vitro. Consistently, overexpression of miR-19a-3p in LPS treated mice by systemically administering agomiR-19a-3p effectively reduced the inflammation in mouse lung tissues, and inhibited M1 macrophage polarization via suppressing STAT1/IRF1 pathway. In summary, our study confirmed that miR-19a-3p, as a direct regulator of STAT1, inhibited M1 macrophages polarization. The miR-19a-3p/STAT1/IRF1 pathway can potentially be used to design novel immunotherapy for modulating macrophage polarization.


2021 ◽  
Vol 19 ◽  
pp. 205873922110593
Author(s):  
Jiali Yang ◽  
Ying Wang ◽  
Dandan Yang ◽  
Jia Ma ◽  
Shuang Wu ◽  
...  

Introduction Macrophages are capable of exerting both proinflammatory and anti-inflammatory functions in response to distinct environmental stimuli, by polarizing into classically inflammatory state (M1) and anti-inflammatory phenotype (M2), respectively. The Wnt/β-catenin signaling plays an important role in the tissue homeostasis and immune regulations, including the macrophage polarizations. However, the molecular mechanism of Wnt/β-catenin signaling in regulating alveolar macrophage polarization in an inflammatory state remains unclear. Methods The Wnt/β-catenin signaling-altered phenotypes of murine macrophage-like RAW264.7 cells in vitro and alveolar macrophage in vivo in both of naïve and lipopolysaccharide-induced inflammation states were accessed by immunoblotting and immunostaining assays. Results The activation of Wnt/β-catenin signaling inhibited macrophage M1 polarization, but promoted alternative M2 polarization in murine RAW264.7 cells under a naïve state. Interestingly, in an LPS-induced inflammation condition, the enhanced Wnt/β-catenin activity suppressed both M1 and M2 polarizations in RAW264.7 cells in vitro, and primary alveolar macrophages of LPS-challenged mice in vivo. Molecular analysis further demonstrated an involvement of Stat signing in regulating Wnt/β-catenin signaling-altered polarizations in mouse alveolar macrophages. Conclusion These results suggest a mechanism by which Wnt/β-catenin signaling modulates macrophage polarization in an inflammation state by regulating the Stat signaling pathway.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Liyuan Cui ◽  
Feng Xu ◽  
Songcun Wang ◽  
Xinyi Li ◽  
Haiyan Lin ◽  
...  

Abstract Background Circadian rhythm is an important player for reproduction. Rev-erbα, a significant clock gene, is involved in regulating cell differentiation, inflammation and metabolism. Macrophage polarization plays crucial roles in immune tolerance at the maternal-fetus interface, which also modulates the initiation and resolution of inflammation. Alteration of macrophage polarization induces adverse pregnancy outcomes such as infertility, recurrent spontaneous abortion and preterm labor. Results Decidual macrophages from LPS-induced mice abortion model displayed M1-like bias, accompanied by decreased expression of Rev-erbα. SR9009, an agonist of Rev-erbα, may reduce lipopolysaccharide (LPS)-induced M1 polarization of macrophages via activation of PI3K but not NF-κB signaling pathway. Furthermore, SR9009 could reduce M1-like polarization of decidual macrophages induced by LPS and attenuate LPS-induced resorption rates in mice model. Conclusions Both in vivo and in vitro experiments demonstrated that the pharmacological activation of Rev-erbα using SR9009 could attenuate the effect of LPS on macrophage polarization and protect pregnancy. This study may provide a potential therapeutic strategy for miscarriage induced by inflammation.


2019 ◽  
Author(s):  
Jiahui Zhou ◽  
Zhiyue Li ◽  
Tianding Wu ◽  
Qun Zhao ◽  
Qiancheng Zhao ◽  
...  

Abstract Background: Acute spinal cord injury (SCI) could cause mainly two types of pathological sequelae, the primary mechanical injury, and the secondary injury. The dysregulation of macrophage polarization to a pro-inflammatory (M1) or an anti-inflammatory phenotype (M2) might cause the failure to post-SCI repair.Methods: In the present study, we conducted SCI model in Balb/c mice and observed the deregulation of M1/2 macrophage polarization after SCI; by bioinformative analyses, lncRNA lncGBP9 and SOCS3 have been regarded as potent regulators of the macrophage polarization after SCI. Mouse bone marrow-derived macrophages (BMDMs) were isolated and identified.Results: In M1 macrophages, lncGBP9 silence significantly decreased p-STAT1 and SOCS3 expression and protein levels, as well as the production of IL-6 and IL-12; in M2 macrophages, lncGBP9 overexpression increased SOCS3 expression and protein levels while suppressed p-STAT6 levels and the production of IL-10 and TGF-β1, indicating that lncGBP9 overexpression promotes the M1 polarization of macrophages. In lncGBP9-silenced SCI mice, the M2 polarization was promoted on day 28 after operation, further indicating that lncGBP9 silence revised the predominance of M1 polarization at the late stage of secondary injury after SCI, therefore improving the repair after SCI. Conclusions: In macrophages, lncGBP9 sponges miR-34a to rescue SOCS3 expression, therefore modulating macrophage polarization.


2020 ◽  
Author(s):  
Jiahui Zhou ◽  
Zhiyue Li ◽  
Tianding Wu ◽  
Qun Zhao ◽  
Qiancheng Zhao ◽  
...  

Abstract Background: Acute spinal cord injury (SCI) could cause mainly two types of pathological sequelae, the primary mechanical injury, and the secondary injury. The inappropriate activation of macrophage phenotypes (macrophage M1 or M2 polarization) might cause the failure to post-SCI repair. Methods: SCI model was established in Balb/c mice and the changes in macrophage phenotypes after SCI was monitored. Bioinformatic analyses were performed to select factors that might regulate macrophage polarization after SCI. Mouse bone marrow-derived macrophages ( BMDMs ) were isolated, identified, and induced for M1 or M2 polarization; the effects of lncRNA lnc GBP9 (guanylate binding protein-9) and SOCS 3 (suppressor of cytokine signaling 3) on macrophages polarization were examined in vitro and in vivo . The predicted miR-34a binding to lncGBP9 and SOCS3 was validated; the dynamic effects of lncGBP9 and miR-34a on SOCS3, STAT 1 (signal transducer and activator of transcription 1)/STAT6 (signal transducer and activator of transcription 6) signaling, and macrophage polarization were examined. Finally, we investigated whether STAT6 could bind the miR-34a promoter to activate its transcription. Results: In SCI Balb/c mice, inappropriate activation of macrophage phenotypes was observed after SCI. In M1 macrophages, lncGBP9 silencing significantly decreased p-STAT1 and SOCS3 expression and protein levels, as well as the production of IL-6 (Interleukin 6) and IL-12 (Interleukin 12); in M2 macrophages, lncGBP9 overexpression increased SOCS3 expression and protein levels while suppressed p-STAT6 levels and the production of IL-10 (Interleukin 10) and TGF-β1 (transforming growth factor beta 1), indicating that lncGBP9 overexpression promotes the M1 polarization of macrophages. In lncGBP9-silenced SCI mice, the M2 polarization was promoted on day 28 after operation, further indicating that lncGBP9 silencing revised the predominance of M1 polarization at the late stage of secondary injury after SCI, therefore improving the repair after SCI. IncGBP9 competed with SOCS3 for miR-34a binding to counteract miR-34a-mediated suppression on SOCS3 and then modulated STAT1/STAT6 signaling and the polarization of macrophages. STAT6 bound the promoter of miR-34a to activate its transcription. Conclusions: In macrophages, lncGBP9 sponges miR-34a to rescue SOCS3 expression, therefore modulating macrophage polarization through STAT1/STAT6 signaling. STAT6 bound the promoter of miR-34a to activate its transcription, therefore forming two different regulatory loops to modulate the polarization of macrophages after SCI.


2017 ◽  
Vol 114 (6) ◽  
pp. E1018-E1026 ◽  
Author(s):  
Andrew M. Kelleher ◽  
Wang Peng ◽  
James K. Pru ◽  
Cindy A. Pru ◽  
Francesco J. DeMayo ◽  
...  

Establishment of pregnancy is a critical event, and failure of embryo implantation and stromal decidualization in the uterus contribute to significant numbers of pregnancy losses in women. Glands of the uterus are essential for establishment of pregnancy in mice and likely in humans. Forkhead box a2 (FOXA2) is a transcription factor expressed specifically in the glands of the uterus and is a critical regulator of postnatal uterine gland differentiation in mice. In this study, we conditionally deleted FOXA2 in the adult mouse uterus using the lactotransferrin Cre (Ltf-Cre) model and in the neonatal mouse uterus using the progesterone receptor Cre (Pgr-Cre) model. The uteri of adult FOXA2-deleted mice were morphologically normal and contained glands, whereas the uteri of neonatal FOXA2-deleted mice were completely aglandular. Notably, adult FOXA2-deleted mice are completely infertile because of defects in blastocyst implantation and stromal cell decidualization. Leukemia inhibitory factor (LIF), a critical implantation factor of uterine gland origin, was not expressed during early pregnancy in adult FOXA2-deleted mice. Intriguingly, i.p. injections of LIF initiated blastocyst implantation in the uteri of both gland-containing and glandless adult FOXA2-deleted mice. Although pregnancy was rescued by LIF and was maintained to term in uterine gland-containing adult FOXA2-deleted mice, pregnancy failed by day 10 in neonatal FOXA2-deleted mice lacking uterine glands. These studies reveal a previously unrecognized role for FOXA2 in regulation of adult uterine function and fertility and provide original evidence that uterine glands and, by inference, their secretions play important roles in blastocyst implantation and stromal cell decidualization.


2021 ◽  
Author(s):  
Huiwen Tian ◽  
Shumei Lin ◽  
Jing Wu ◽  
Ming Ma ◽  
Jian Yu ◽  
...  

Abstract Corneal transplantation rejection remains a major threat to the success rate in high-risk patients. Given the many side effects presented by traditional immunosuppressants, there is an urgency to clarify the mechanism of corneal transplantation rejection and to identify new therapeutic targets. Kaempferol is a natural flavonoid that has been proven in various studies to possess anti-inflammatory, antioxidant, anticancer, and neuroprotective properties. However, the relationship between kaempferol and corneal transplantation remains largely unexplored. To address this, both in vivo and in vitro, we established a model of corneal allograft transplantation in Wistar rats and an LPS-induced inflammatory model in THP-1 derived human macrophages. In the transplantation experiments, we observed an enhancement in the NLRP3 / IL-1 β axis and in M1 macrophage polarization post-operation. In groups to which kaempferol intraperitoneal injections were administered, this response was effectively reduced. However, the effect of kaempferol was reversed after the application of autophagy inhibitors. Similarly, in the inflammatory model, we found that different concentrations of kaempferol can reduce the LPS-induced M1 polarization and NLRP3 inflammasome activation. Moreover, we confirmed that kaempferol induced autophagy and that autophagy inhibitors reversed the effect in macrophages. In conclusion, we found that kaempferol can inhibit the activation of the NLRP3 inflammasomes by inducing autophagy, thus inhibiting macrophage polarization, and ultimately alleviating corneal transplantation rejection. Thus, our study suggests that kaempferol could be used as a potential therapeutic agent in the treatment of allograft rejection.


2021 ◽  
Author(s):  
Ziming Jiang ◽  
Yiming Zhang ◽  
Yu Zhang ◽  
Zhankui Jia ◽  
Zhengguo Zhang ◽  
...  

Abstract Background: Exosomes mediated crosstalk between tumor cells and other stromal cells including tumor associated macrophages (TAM) plays an essential role in reprogramming tumor microenvironment (TME) to facilitate tumor progression. However, the mechanism of tumor derived exosomes promotes bladder cancer progression have not been defined.Methods: Exosomes were extracted from bladder cancer cells MB49 conditioned medium by ultracentrifugation. The effects of MB49-derived exosomes on macrophages polarization were analyzed by qPCR, flow cytometry, and Western blot. The immunosuppressive phenotype and function of MB49-derived exosomes stimulated macrophages were verified by tumor xenograft assays and T cell co-culture experiments. Exosomal miRNAs were analyzed by microarray to identify potential targets regulating macrophage polarization.Results: MB49-derived exosomes could be ingested by macrophages, consequently promoting macrophages immunosuppressive polarization. Mechanically, the MB49-derived exosomes induced macrophage M2 polarization was mediated by down-regulation of PTEN and activation of AKT/STAT3/6 signaling. Moreover, hindrance of the generation or secretion of exosomes by GW4869 inhibited macrophages differentiation into immunosuppressive phenotype and function, thereby suppressed tumor growth in a mouse subcutaneous tumor model.Conclusion: Our study confirmed the contribution of bladder cancer derived exosomes on the establishment of immunosuppressive TME and provided a potential therapeutic target for bladder cancer treatment.


2019 ◽  
Vol 39 (11) ◽  
Author(s):  
Fei Sun ◽  
Zhixiang Guo ◽  
Chengxin Zhang ◽  
Hong Che ◽  
Wenhui Gong ◽  
...  

Abstract The aim of the present study was to explore the role of long non-coding RNA (lncRNA) non-coding repressor of NFAT (NRON) in the atrial fibrosis and to explore whether its underlying mechanism was associated with macrophage polarization. Enzyme-linked immunosorbent assay (ELISA) analysis of pro-inflammatory cytokines revealed that NRON overexpression suppressed, whereas NRON silencing facilitated the angiotensin II (Ang II)-induced inflammatory response in primary cultured atrial myocytes. The chromatin immunoprecipitation (ChIP) results showed that nuclear factor of activated T cell 3 (NFATc3) was recruited to the promoter region of interleukin (IL) 12 (IL-12) in atrial myocytes. Further data showed that NRON overexpression suppressed, whereas NRON silencing further promoted the Ang II-induced NFATc3 nuclear transport and IL-12 expression in atrial myocytes. Moreover, RAW264.7 macrophages were incubated with the conditioned medium from the Ang II-treated atrial myocytes transfected with NRON and IL-12 overexpression vectors. IL-12 overexpression abrogated the NRON overexpression-mediated inhibition of RAW264.7 macrophage polarization to the M1-like phenotype. Additionally, mouse atrial fibroblasts were incubated with the culture medium from RAW264.7 macrophages treated as described above. IL-12 overexpression rescued the NRON overexpression-inhibited protein levels of fibrosis markers Collagen I/III in mouse atrial fibroblasts. Collectively, our data indicate that lncRNA NRON alleviates atrial fibrosis through suppression of M1 macrophages activated by atrial myocytes.


Sign in / Sign up

Export Citation Format

Share Document