scholarly journals Transcriptomic and Histological Analysis of Exacerbated Immune Response in Multidrug-Resistant Pseudomonas aeruginosa in a Murine Model of Endophthalmitis

2022 ◽  
Vol 12 ◽  
Author(s):  
Poonam Naik ◽  
Suchita Pandey ◽  
Milind N. Naik ◽  
Dilip Kumar Mishra ◽  
Sreedhar Rao Boyenpally ◽  
...  

Multidrug-resistant (MDR) endophthalmitis is a serious threat to the whole spectrum of therapeutic procedures associated with the risk of managing and preventing vision loss. We have earlier shown the interplay of immune mediators in patients with MDR Pseudomonas aeruginosa (PA) endophthalmitis leading to worse outcome. Expanding on these findings, a murine model of endophthalmitis was developed to explore the effects of drug resistance on the pathogenesis by analyzing the temporal changes in retinal morphology along with its transcriptomic signatures. Clinical isolates of susceptible (S-PA) and multidrug-resistant PA (MDR-PA) were injected intravitreally in C57BL/6 mice followed by enucleation at 6 and 24 h time points postinfection. Disease progression and retinal changes were monitored by clinical and histological assessment and transcriptome analysis in a pair-wise manner. Histological assessment of MDR-PA eyeball revealed higher disease severity (p < 0.05), CD45+ cells (p = 0.007), MPO+ cells (p = 0.01), GFAP+ (p = 0.02), along with higher retinal cell death in mice infected with MDR-PA (p = 0.008). Temporal transcriptome analysis revealed differential expression of nearly 923 genes at 6 h p.i. and 2,220 genes at 24 h p.i. (FC ≥2, adjusted p-value <0.05). Pathway enrichment analysis identified differential regulation of chemokine- and cytokine-mediated, MAPK, and NF-кβ signaling pathways. In conclusion, rapid deterioration of retinal architecture and immune exacerbation was significantly associated with the MDR endophthalmitis, suggesting the need for immunomodulatory agents to strengthen host cell functions and support antibiotics to save the retinal structure from inevitable deterioration and restoration of the vision.

2021 ◽  
Vol 12 ◽  
Author(s):  
Holly Anne Martin ◽  
Anitha Sundararajan ◽  
Tatiana S. Ermi ◽  
Robert Heron ◽  
Jason Gonzales ◽  
...  

For several decades, Mfd has been studied as the bacterial transcription-coupled repair factor. However, recent observations indicate that this factor influences cell functions beyond DNA repair. Our lab recently described a role for Mfd in disulfide stress that was independent of its function in nucleotide excision repair and base excision repair. Because reports showed that Mfd influenced transcription of single genes, we investigated the global differences in transcription in wild-type and mfd mutant growth-limited cells in the presence and absence of diamide. Surprisingly, we found 1,997 genes differentially expressed in Mfd– cells in the absence of diamide. Using gene knockouts, we investigated the effect of genetic interactions between Mfd and the genes in its regulon on the response to disulfide stress. Interestingly, we found that Mfd interactions were complex and identified additive, epistatic, and suppressor effects in the response to disulfide stress. Pathway enrichment analysis of our RNASeq assay indicated that major biological functions, including translation, endospore formation, pyrimidine metabolism, and motility, were affected by the loss of Mfd. Further, our RNASeq findings correlated with phenotypic changes in growth in minimal media, motility, and sensitivity to antibiotics that target the cell envelope, transcription, and DNA replication. Our results suggest that Mfd has profound effects on the modulation of the transcriptome and on bacterial physiology, particularly in cells experiencing nutritional and oxidative stress.


Genes ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 720
Author(s):  
Lihui Men ◽  
Wenting Hui ◽  
Xin Guan ◽  
Tongtong Song ◽  
Xuan Wang ◽  
...  

Obesity is associated with an increased risk of developing cardiovascular disease (CVD), with limited alterations in cardiac genomic characteristics known. Cardiac transcriptome analysis was conducted to profile gene signatures in high-fat diet (HFD)-induced obese mice. A total of 184 differentially expressed genes (DEGs) were identified between groups. Based on the gene ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs, the critical role of closely interlocked glucose metabolism was determined in HFD-induced cardiac remodeling DEGs, including Nr4a1, Fgf21, Slc2a3, Pck1, Gck, Hmgcs2, and Bpgm. Subsequently, the expression levels of these DEGs were evaluated in both the myocardium and palmitic acid (PA)-stimulated H9c2 cardiomyocytes using qPCR. Nr4a1 was highlighted according to its overexpression resulting from the HFD. Additionally, inhibition of Nr4a1 by siRNA reversed the PA-induced altered expression of glucose metabolism-related DEGs and hexokinase 2 (HK2), the rate-limiting enzyme in glycolysis, thus indicating that Nr4a1 could modulate glucose metabolism homeostasis by regulating the expression of key enzymes in glycolysis, which may subsequently influence cardiac function in obesity. Overall, we provide a comprehensive understanding of the myocardium transcript molecular framework influenced by HFD and propose Nr4a1 as a key glucose metabolism target in obesity-induced CVD.


2020 ◽  
Author(s):  
Holly Anne Martin ◽  
Anitha Sundararajan ◽  
Tatiana Ermi ◽  
Robert Heron ◽  
Jason Gonzales ◽  
...  

AbstractFor several decades, Mfd has been studied as the bacterial transcription-coupled repair factor. However, recent observations indicate that this factor influences cell functions beyond DNA repair. Our lab recently described a role for Mfd in disulfide stress that was independent of its function in nucleotide excision repair and base excision repair. Because reports showed that Mfd influenced transcription of single genes, we investigated the global differences in transcription in wild-type and mfd mutant growth-limited cells in the presence and absence of diamide. Surprisingly, we found 1,997 genes differentially expressed in Mfd- cells in the absence of diamide. Using gene knockouts, we investigated the effect of genetic interactions between Mfd and the genes in its regulon on the response to disulfide stress. Interestingly, we found that Mfd interactions were complex and identified additive, epistatic, and suppressor effects in the response to disulfide stress. Pathway enrichment analysis of our RNASeq assay indicated that major biological functions, including translation, endospore formation, pyrimidine metabolism, and motility, were affected by the loss of Mfd. Further, our RNASeq findings correlated with phenotypic changes in growth in minimal media, motility, and sensitivity to antibiotics that target the cell envelope, transcription, and DNA replication. Our results suggest that Mfd has profound effects on the modulation of the transcriptome and on bacterial physiology, particularly in cells experiencing nutritional and oxidative stress.


2013 ◽  
Vol 40 (12) ◽  
pp. 1256
Author(s):  
XiaoDong JIA ◽  
XiuJie CHEN ◽  
Xin WU ◽  
JianKai XU ◽  
FuJian TAN ◽  
...  

2019 ◽  
Vol 22 (6) ◽  
pp. 411-420 ◽  
Author(s):  
Xian-Jun Wu ◽  
Xin-Bin Zhou ◽  
Chen Chen ◽  
Wei Mao

Aim and Objective: Cardiovascular disease is a serious threat to human health because of its high mortality and morbidity rates. At present, there is no effective treatment. In Southeast Asia, traditional Chinese medicine is widely used in the treatment of cardiovascular diseases. Quercetin is a flavonoid extract of Ginkgo biloba leaves. Basic experiments and clinical studies have shown that quercetin has a significant effect on the treatment of cardiovascular diseases. However, its precise mechanism is still unclear. Therefore, it is necessary to exploit the network pharmacological potential effects of quercetin on cardiovascular disease. Materials and Methods: In the present study, a novel network pharmacology strategy based on pharmacokinetic filtering, target fishing, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, compound-target-pathway network structured was performed to explore the anti- cardiovascular disease mechanism of quercetin. Results:: The outcomes showed that quercetin possesses favorable pharmacokinetic profiles, which have interactions with 47 cardiovascular disease-related targets and 12 KEGG signaling pathways to provide potential synergistic therapeutic effects. Following the construction of Compound-Target-Pathway (C-T-P) network, and the network topological feature calculation, we obtained top 10 core genes in this network which were AKT1, IL1B, TNF, IL6, JUN, CCL2, FOS, VEGFA, CXCL8, and ICAM1. KEGG pathway enrichment analysis. These indicated that quercetin produced the therapeutic effects against cardiovascular disease by systemically and holistically regulating many signaling pathways, including Fluid shear stress and atherosclerosis, AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, MAPK signaling pathway, IL-17 signaling pathway and PI3K-Akt signaling pathway.


2019 ◽  
Vol 19 (12) ◽  
pp. 1463-1472 ◽  
Author(s):  
Nil Kiliç ◽  
Yasemin Ö. Islakoğlu ◽  
İlker Büyük ◽  
Bala Gür-Dedeoğlu ◽  
Demet Cansaran-Duman

Objective: Breast Cancer (BC) is the most common type of cancer diagnosed in women. A common treatment strategy for BC is still not available because of its molecular heterogeneity and resistance is developed in most of the patients through the course of treatment. Therefore, alternative medicine resources as being novel treatment options are needed to be used for the treatment of BC. Usnic Acid (UA) that is one of the secondary metabolites of lichens used for different purposes in the field of medicine and its anti-proliferative effect has been shown in certain cancer types, suggesting its potential use for the treatment. Methods: Anti-proliferative effect of UA in BC cells (MDA-MB-231, MCF-7, BT-474) was identified through MTT analysis. Microarray analysis was performed in cells treated with the effective concentration of UA and UA-responsive miRNAs were detected. Their targets and the pathways that they involve were determined using a miRNA target prediction tool. Results: Microarray experiments showed that 67 miRNAs were specifically responsive to UA in MDA-MB-231 cells while 15 and 8 were specific to BT-474 and MCF-7 cells, respectively. The miRNA targets were mostly found to play role in Hedgehog signaling pathway. TGF-Beta, MAPK and apoptosis pathways were also the prominent ones according to the miRNA enrichment analysis. Conclusion: The current study is important as being the first study in the literature which aimed to explore the UA related miRNAs, their targets and molecular pathways that may have roles in the BC. The results of pathway enrichment analysis and anti-proliferative effects of UA support the idea that UA might be used as a potential alternative therapeutic agent for BC treatment.


Sign in / Sign up

Export Citation Format

Share Document