scholarly journals Cleavage-Mediated Regulation of Myd88 Signaling by Inflammasome-Activated Caspase-1

2022 ◽  
Vol 12 ◽  
Author(s):  
Monika Avbelj ◽  
Iva Hafner-Bratkovič ◽  
Duško Lainšček ◽  
Mateja Manček-Keber ◽  
Tina Tinkara Peternelj ◽  
...  

Coordination among multiple signaling pathways ensures an appropriate immune response, where a signaling pathway may impair or augment another signaling pathway. Here, we report a negative feedback regulation of signaling through the key innate immune mediator MyD88 by inflammasome-activated caspase-1. NLRP3 inflammasome activation impaired agonist- or infection-induced TLR signaling and cytokine production through the proteolytic cleavage of MyD88 by caspase-1. Site-specific mutagenesis was used to identify caspase-1 cleavage site within MyD88 intermediary segment. Different cleavage site location within MyD88 defined the functional consequences of MyD88 cleavage between mouse and human cells. LPS/monosodium urate–induced mouse inflammation model corroborated the physiological role of this mechanism of regulation, that could be reversed by chemical inhibition of NLRP3. While Toll/interleukin-1 receptor (TIR) domain released by MyD88 cleavage additionally contributed to the inhibition of signaling, Waldenström’s macroglobulinemia associated MyD88L265P mutation is able to evade the caspase-1-mediated inhibition of MyD88 signaling through the ability of its TIRL265P domain to recruit full length MyD88 and facilitate signaling. The characterization of this mechanism reveals an additional layer of innate immunity regulation.

2013 ◽  
Vol 81 (8) ◽  
pp. 2997-3008 ◽  
Author(s):  
Wei Li ◽  
Barry P. Katz ◽  
Margaret E. Bauer ◽  
Stanley M. Spinola

ABSTRACTRecognition of microbial infection by certain intracellular pattern recognition receptors leads to the formation of a multiprotein complex termed the inflammasome. Inflammasome assembly activates caspase-1 and leads to cleavage and secretion of the proinflammatory cytokines interleukin-1 beta (IL-1β) and IL-18, which help control many bacterial pathogens. However, excessive inflammation mediated by inflammasome activation can also contribute to immunopathology. Here, we investigated whetherHaemophilus ducreyi, a Gram-negative bacterium that causes the genital ulcer disease chancroid, activates inflammasomes in experimentally infected human skin and in monocyte-derived macrophages (MDM). AlthoughH. ducreyiis predominantly extracellular during human infection, several inflammasome-related components were transcriptionally upregulated inH. ducreyi-infected skin. Infection of MDM with live, but not heat-killed,H. ducreyiinduced caspase-1- and caspase-5-dependent processing and secretion of IL-1β. Blockage ofH. ducreyiuptake by cytochalasin D significantly reduced the amount of secreted IL-1β. Knocking down the expression of the inflammasome components NLRP3 and ASC abolished IL-1β production. Consistent with NLRP3-dependent inflammasome activation, blocking ATP signaling, K+efflux, cathepsin B activity, and lysosomal acidification all inhibited IL-1β secretion. However, inhibition of the production and function of reactive oxygen species did not decrease IL-1β production. Polarization of macrophages to classically activated M1 or alternatively activated M2 cells abrogated IL-1β secretion elicited byH. ducreyi. Our study data indicate thatH. ducreyiinduces NLRP3 inflammasome activation via multiple mechanisms and suggest that the heterogeneity of macrophages within human lesions may modulate inflammasome activation during human infection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hong-Su Park ◽  
Yao Lu ◽  
Kannupriya Pandey ◽  
GuanQun Liu ◽  
Yan Zhou

Nucleotide-binding domain and leucine-rich repeat-containing protein 3 (NLRP3) inflammasome-mediated interleukin-1 beta (IL-1β) production is one of the crucial responses in innate immunity upon infection with viruses including influenza A virus (IAV) and is modulated by both viral and host cellular proteins. Among host proteins involved, we identified tripartite motif-containing protein 25 (TRIM25) as a positive regulator of porcine NLRP3 inflammasome-mediated IL-1β production. TRIM25 achieved this function by enhancing the pro-caspase-1 interaction with apoptosis-associated speck-like protein containing caspase recruitment domain (ASC). The N-terminal RING domain, particularly residues predicted to be critical for the E3 ligase activity of TRIM25, was responsible for this enhancement. However, non-structural protein 1 (NS1) C-terminus of 2009 pandemic IAV interfered with this action by interacting with TRIM25, leading to diminished association between pro-caspase-1 and ASC. These findings demonstrate that TRIM25 promotes the IL-1β signaling, while it is repressed by IAV NS1 protein, revealing additional antagonism of the NS1 against host pro-inflammatory responses.


2021 ◽  
Vol 49 (08) ◽  
pp. 2001-2015
Author(s):  
Guixian Zhang ◽  
Liming Tang ◽  
Hongbin Liu ◽  
Dawei Liu ◽  
Manxue Wang ◽  
...  

Chronic pancreatitis (CP) is a multifactorial, inflammatory syndrome characterized by acinar atrophy and fibrosis. Activation of NOD-like receptors family pyrin domain-containing 3 (NLRP3) inflammasome is a central mediator of multiple chronic inflammatory responses and chronic fibrosis including pancreatic fibrosis in CP. The Psidium guajavaleaf is widely used in traditional medicine for the treatment of chronic inflammation, but the anti-inflammatory effect of Psidium guajavaleaf on CP has not yet been revealed. In this study, we investigated whether the extract of total flavonoids from Psidium guajava leaves (TFPGL) plays a therapeutic mechanism on CP through NLRP3 inflammasome signaling pathway in a mouse CP model. The H&E and acid-Sirius red staining indicted that TFPGL attenuated the inflammatory cell infiltration and fibrosis significantly. The results of immunohistological staining, western blot and RT-qPCR showed that the expressions of NLRP3 and caspase-1 were significantly increased in the CP model group, while TFPGL significantly decreased the NLRP3 and caspase-1 expression at both the gene and protein levels. Moreover, ELISA assay was used to examine the levels of NLRP3 inflammasome target genes, such as caspase-1, IL-1[Formula: see text] and IL-18. We found that TFPGL treatment decreased the expression of caspase-1, IL-1[Formula: see text] and IL-18, which is critical for the NLRP3 inflammasome signaling pathway and inflammation response significantly. These results demonstrated that TFPGL attenuated pancreatic inflammation and fibrosis via preventing NLRP3 inflammasome activation and TFPGL can be used as a potential therapeutic agent for CP.


2020 ◽  
Author(s):  
Shaojian Lin ◽  
Weiwei Zhang ◽  
Ziwen Shi ◽  
Langping Tan ◽  
Yue Zhu ◽  
...  

Abstract Background: Our previous study shows that LINC01278 inhibits the development of papillary thyroid carcinoma (PTC) by regulating miR-376c-3p/DNM3 axis. However, the regulation mechanism of LINC01278 expression in PTC cells is still unclear. Methods: The luciferase reporter and ChIP assays were used to confirme the binding of LEF-1 to the putative promoter site of LINC01278. The RNA immunoprecipitation was used the enrichment of LINC01278 in β-catenin protein. Western blot was used to detected the expression of target proteins. Results: Firstly, the online PROMO algorithm determined a putative LEF-1 binding site on LINC01278 promoter. Then, the luciferase reporter and ChIP assays confirmed the binding of LEF-1 to the putative promoter site of LINC01278. Furthermore, the overexpression of β-catenin increased the binding of LEF-1 to the LINC01278 promoter, and the knockdown or overexpression of LEF-1 or β-catenin can affect the expression level of LINC01278. In addition, RNA immunoprecipitation showed that LINC01278 was enriched in β-catenin protein. RNA pulldown and western blot also confirmed that LINC01278 precipitated β-catenin in TPC-1 and BCPAP cells. Furthermore, the knockdown or overexpression of LINC01278 significantly affected the expression of β-catenin and targets of Wnt/β-catenin signaling pathway (CCND2, CyclinD1, MYC, and SOX4). Conclusion: In summary, we found the transcriptional activation of LINC01278 by the β-catenin/LEF-1 transcription factor, and the negative feedback regulation of LINC01278 on Wnt/β-catenin signaling pathway activation.


Endocrinology ◽  
2007 ◽  
Vol 148 (2) ◽  
pp. 575-584 ◽  
Author(s):  
Hwyda A. Arafat ◽  
Anand K. Katakam ◽  
Galina Chipitsyna ◽  
Qiaoke Gong ◽  
Ajith R. Vancha ◽  
...  

Osteopontin (OPN), a phosphorylated glycoprotein that binds to an integrin-binding motif, has been shown to regulate nitric oxide (NO) production via inhibition of induced NO synthase (iNOS) synthesis. In the transplanted islets, iNOS and toxic amounts of NO are produced as a result of islets infiltration with inflammatory cells and production of proinflammatory cytokines. Here, we demonstrate that addition of OPN before IL-1β in freshly isolated rat islets improved their glucose stimulated insulin secretion dose-dependently and inhibited IL-1β-induced NO production in an arginine-glycine-aspartate-dependent manner. Transient transfection of OPN gene in RINm5F β-cells fully prevented the toxic effect of IL-1β at concentrations that reduced the viability by 50% over 3 d. OPN prevention of IL-1β-induced toxicity was accompanied by inhibited transcription of iNOS by 80%, resulting in 50% decreased formation of the toxic NO. In OPN-transfected cells, the IL-1β-induced nuclear factor-κB activity was significantly reduced. Islets exposed to IL-1β revealed a naturally occurring early up-regulated OPN transcription. OPN promoter activity was increased in the presence of IL-1β, IL-1β-induced NO, and an inducer of NO synthesis. These data suggest the presence of a cross talk between the IL-1β and OPN pathways and a unique trans-regulatory mechanism in which IL-1β-induced NO synthesis feedback regulates itself through up-regulation of OPN gene transcription. Our data also suggest that influencing OPN expression represents an approach for affecting cytokine-induced signal transduction to prevent or reduce activation of the cascade of downstream devastating effects after islet transplantation.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Berhane Asfaw Idosa ◽  
Anne Kelly ◽  
Susanne Jacobsson ◽  
Isak Demirel ◽  
Hans Fredlund ◽  
...  

Meningococcal disease such as sepsis and meningitidis is hallmarked by an excessive inflammatory response. The causative agent,Neisseria meningitidis, expresses the endotoxin lipooligosaccharide (LOS) that is responsible for activation of immune cells and the release of proinflammatory cytokines. One of the most potent proinflammatory cytokines, interleukin-1β(IL-1β), is activated following caspase-1 activity in the intracellular multiprotein complex called inflammasome. Inflammasomes are activated by a number of microbial factors as well as danger molecules by a two-step mechanism—priming and licensing of inflammasome activation—but there are no data available regarding a role for inflammasome activation in meningococcal disease. The aim of this study was to investigate ifN. meningitidisactivates the inflammasome and, if so, the role of bacterial LOS in this activation. Cells were subjected toN. meningitidis, both wild-type (FAM20) and its LOS-deficient mutant (lpxA), and priming as well as licensing of inflammasome activation was investigated. The wild-type LOS-expressing parental FAM20 serogroup CN. meningitidis(FAM20) strain significantly enhanced the caspase-1 activity in human neutrophils and monocytes, whereaslpxAwas unable to induce caspase-1 activity as well as to induce IL-1βrelease. While thelpxAmutant induced a priming response, measured as increased expression ofNLRP3andIL1B, the LOS-expressing FAM20 further increased this priming. We conclude that although non-LOS components ofN. meningitidiscontribute to the priming of the inflammasome activity, LOSper seis to be considered as the central component ofN. meningitidisvirulence, responsible for both priming and licensing of inflammasome activation.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
A Saljic ◽  
M Hohl ◽  
N Li ◽  
T Agbaedeng ◽  
D Twomey ◽  
...  

Abstract Introduction Obesity and enhanced inflammatory response are two independent risk factors involved in the pathogenesis of atrial fibrillation (AF). Components of the NLRP3 inflammasome have been found to be expressed in cardiomyocytes and cardiac fibroblasts and that increased inflammasome activation contributes to the pathogenesis of AF. The NLRP3 inflammasome is a multi-protein signaling complex that is activated in two steps: 1st) a priming event that includes a NFκB-activating stimuli which increases the expression of pro-inflammatory cytokines, and 2nd) a triggering event that includes the assembly of the inflammasome complex and activation of caspase-1 which promotes the production of pro-inflammatory cytokines like interleukin 1 beta (IL-1b). Purpose We used a sheep model of sustained obesity to characterize the association between atrial myocardial fat infiltration, atrial activation of the NLRP3 inflammasome and the development of an atrial arrhythmogenic substrate for AF. Methods Eight sheep were fed ad libitum calorie-dense diet over 40 weeks to gain weight and were maintained in this state of sustained obesity for another 40 weeks. Eight lean, weight-controlled and aged-matched sheep served as control. Atrial fat infiltration was determined by oil-red staining and NLRP3 inflammasome activation was assessed by immunoblot in atrial whole-tissue lysate. Atrial effective refractory periods (aERPs) were evaluated (twice diastolic threshold, cycle length (CL) of 400 ms, S1S2 -protocol). Results Sustained obesity was associated with increased atrial fat infiltration (lean: 0.8±0.3% vs. obese: 2.3±1.2%, p=0.1) and shorter aERP (lean: 169±22ms vs. obese: 138±26ms, p=0.03). Protein levels of caspase-1 and mature IL-1β were significantly enhanced (p=0.04 and p=0.01, respectively). Further shortening of aERP correlated with increasing atrial protein levels of caspase-1 (r=0.59, p=0.02). In contrast, levels of TNFα and NFκB were not significantly changed in atria of sheep with sustained obesity. Conclusions Sustained obesity is associated with increased expression of NLRP3 inflammasome-related proteins and the development of an arrhythmogenic substrate for AF. Our study suggest that the increased activity is due to increased triggering, rather than increased gene transcription. Whether NLRP3 inflammasome activation represents a modifiable target to prevent AF in obesity warrants further study.


Sign in / Sign up

Export Citation Format

Share Document