scholarly journals Time-Varying Epipelagic Community Seascapes: Assessing and Predicting Species Composition in the Northeastern Pacific Ocean

2021 ◽  
Vol 8 ◽  
Author(s):  
Caren Barceló ◽  
Richard D. Brodeur ◽  
Lorenzo Ciannelli ◽  
Elizabeth A. Daly ◽  
Craig M. Risien ◽  
...  

The vast spatial extent of the ocean presents a major challenge for monitoring changes in marine biodiversity and connecting those changes to management practices. Remote-sensing offers promise for overcoming this problem in a cost-effective, tractable way, but requires interdisciplinary expertise to identify robust approaches. In this study, we use generalized additive mixed models to evaluate the relationship between an epipelagic fish community in the Northeastern Pacific Ocean and oceanographic predictor variables, quantified in situ as well as via remote-sensing. We demonstrate the utility of using MODIS Rrs555 fields at monthly and interannual timescales to better understand how freshwater input into the Northern California Current region affects higher trophic level biology. These relationships also allow us to identify a gradient in community composition characteristic of warmer, offshore areas and cooler, nearshore areas over the period 2003–2012, and predict community characteristics outside of sampled species data from 2013 to 2015. These spatial maps therefore represent a new, temporally and spatially explicit index of community differences, potentially useful for filling gaps in regional ecosystem status reports and is germane to the broader ecosystem-based fisheries management context.

2021 ◽  
Vol 13 (19) ◽  
pp. 3951
Author(s):  
Kim André Vanselow ◽  
Harald Zandler ◽  
Cyrus Samimi

Greening and browning trends in vegetation have been observed in many regions of the world in recent decades. However, few studies focused on dry mountains. Here, we analyze trends of land cover change in the Western Pamirs, Tajikistan. We aim to gain a deeper understanding of these changes and thus improve remote sensing studies in dry mountainous areas. The study area is characterized by a complex set of attributes, making it a prime example for this purpose. We used generalized additive mixed models for the trend estimation of a 32-year Landsat time series (1988–2020) of the modified soil adjusted vegetation index, vegetation data, and environmental and socio-demographic data. With this approach, we were able to cope with the typical challenges that occur in the remote sensing analysis of dry and mountainous areas, including background noise and irregular data. We found that greening and browning trends coexist and that they vary according to the land cover class, topography, and geographical distribution. Greening was detected predominantly in agricultural and forestry areas, indicating direct anthropogenic drivers of change. At other sites, greening corresponds well with increasing temperature. Browning was frequently linked to disastrous events, which are promoted by increasing temperatures.


2007 ◽  
Vol 31 (4) ◽  
pp. 421-434 ◽  
Author(s):  
Anders Knudby ◽  
Ellsworth LeDrew ◽  
Candace Newman

Coral reefs are hotspots of marine biodiversity, and their global decline is a threat to our natural heritage. Conservation management of these precious ecosystems relies on accurate and up-to-date information about ecosystem health and the distribution of species and habitats, but such information can be costly to gather and interpret in the field. Remote sensing has proven capable of collecting information on geomorphologic zones and substrate types for coral reef environments, and is cost-effective when information is needed for large areas. Remote sensing-based mapping of coral habitat variables known to influence biodiversity has only recently been undertaken and new sensors and improved data processing show great potential in this area. This paper reviews coral reef biodiversity, the influence of habitat variables on its local spatial distribution, and the potential for remote sensing to produce maps of these habitat variables, thus indirectly mapping coral reef biodiversity and fulfilling information needs of coral reef managers.


2021 ◽  
Vol 9 (3) ◽  
pp. 288 ◽  
Author(s):  
Anna Maria Mannino ◽  
Flavio Borfecchia ◽  
Carla Micheli

The accelerating rate of the introduction of non-indigenous species (NIS) and the magnitude of shipping traffic make the Mediterranean Sea a hotspot of biological invasions. For the effective management of NIS, early detection and intensive monitoring over time and space are essential. Here, we present an overview of possible applications of citizen science and remote sensing in monitoring alien seaweeds in the Mediterranean Sea. Citizen science activities, involving the public (e.g., tourists, fishermen, divers) in the collection of data, have great potential for monitoring NIS. The innovative methodologies, based on remote sensing techniques coupled with in situ/laboratory advanced sampling/analysis methods for tracking such species, may be useful and effective tools for easily assessing NIS distribution patterns and monitoring the space/time changes in habitats in order to support the sustainable management of the ecosystems. The reported case studies highlight how these cost-effective systems can be useful complementary tools for monitoring NIS, especially in marine protected areas, which, despite their fundamental role in the conservation of marine biodiversity, are not immune to the introduction of NIS. To ensure effective and long-lasting management strategies, collaborations between researchers, policy makers and citizens are essential.


2022 ◽  
Author(s):  
Jintao Wang ◽  
Robert Boenish ◽  
Yunkai Li ◽  
Xinjun Chen

Abstract Climate change is proving to be a driving factor reshaping the distribution and altering the movement of marine species, dynamics of which are crucial for sustainable development and marine resources management. However, how Pacific Ocean squids – boasting the salient biological features of a one-year life span and strong adaptive abilities, and which support more than 25% of global squid catches – respond to climate change is overlooked. We address this knowledge gap by constructing spatio-temporal generalized additive mixed models based on hundreds of thousands of digitized Chinese squid-jigging logbooks covering three Pacific stocks of two squid species (Ommastrephes bartramii and Dosidicus gigas) spanning 2005 – 2018. Here we show the relationships between environmental variables and local abundance of squids (reflected by response curves) track changes in climate; the squid biomass peaks and troughs coinciding with La Niña and El Niño events, respectively are moderate in contrast to the effects of directional climate change. We find substantial poleward shifts by squids inhabiting low latitude and middle latitudes. These findings have broad implications both for food security and open ocean ecosystem dynamics.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 396
Author(s):  
Junxia Yan ◽  
Yanfei Ma ◽  
Dongyun Zhang ◽  
Zechen Li ◽  
Weike Zhang ◽  
...  

Land surface evapotranspiration (ET) and gross primary productivity (GPP) are critical components in terrestrial ecosystems with water and carbon cycles. Large-scale, high-resolution, and accurately quantified ET and GPP values are important fundamental data for freshwater resource management and help in understanding terrestrial carbon and water cycles in an arid region. In this study, the revised surface energy balance system (SEBS) model and MOD17 GPP algorithm were used to estimate daily ET and GPP at 100 m resolution based on multi-source satellite remote sensing data to obtain surface biophysical parameters and meteorological forcing data as input variables for the model in the midstream oasis area of the Heihe River Basin (HRB) from 2010 to 2016. Then, we further calculated the ecosystem water-use efficiency (WUE). We validated the daily ET, GPP, and WUE from ground observations at a crop oasis station and conducted spatial intercomparisons of monthly and annual ET, GPP, and WUE at the irrigation district and cropland oasis scales. The site-level evaluation results show that ET and GPP had better performance than WUE at the daily time scale. Specifically, the deviations in the daily ET, GPP, and WUE data compared with ground observations were small, with a root mean square error (RMSE) and mean absolute percent error (MAPE) of 0.75 mm/day and 26.59%, 1.13 gC/m2 and 36.62%, and 0.50 gC/kgH2O and 39.83%, respectively. The regional annual ET, GPP, and WUE varied from 300 to 700 mm, 200 to 650 gC/m2, and 0.5 to 1.0 gC/kgH2O, respectively, over the entire irrigation oasis area. It was found that annual ET and GPP were greater than 550 mm and 500 gC/m2, and annual oasis cropland WUE had strong invariability and was maintained at approximately 0.85 gC/kgH2O. The spatial intercomparisons from 2010 to 2016 revealed that ET had similar spatial patterns to GPP due to tightly coupled carbon and water fluxes. However, the WUE spatiotemporal patterns were slightly different from both ET and GPP, particularly in the early and late growing seasons for the oasis area. Our results demonstrate that spatial full coverage and reasonably fine spatiotemporal variation and variability could significantly improve our understanding of water-saving irrigation strategies and oasis agricultural water management practices in the face of water shortage issues.


2019 ◽  
Vol 11 (6) ◽  
pp. 705 ◽  
Author(s):  
Poolad Karimi ◽  
Bhembe Bongani ◽  
Megan Blatchford ◽  
Charlotte de Fraiture

Remote sensing techniques have been shown, in several studies, to be an extremely effective tool for assessing the performance of irrigated areas at various scales and diverse climatic regions across the world. Open access, ready-made, global ET products were utilized in this first-ever-countrywide irrigation performance assessment study. The study aimed at identifying ‘bright spots’, the highest performing sugarcane growers, and ‘hot spots’, or low performing sugarcane growers. Four remote sensing-derived irrigation performance indicators were applied to over 302 sugarcane growers; equity, adequacy, reliability and crop water productivity. The growers were segmented according to: (i) land holding size or grower scale (ii) management regime, (iii) location of the irrigation schemes and (iv) irrigation method. Five growing seasons, from June 2005 to October 2009, were investigated. The results show while the equity of water distribution is high across all management regimes and locations, adequacy and reliability of water needs improvement in several locations. Given the fact that, in general, water supply was not constrained during the study period, the observed issues with adequacy and reliability of irrigation in some of the schemes were mostly due to poor scheme and farm level water management practices. Sugarcane crop water productivity showed the highest variation among all the indicators, with Estate managed schemes having the highest CWP at 1.57 kg/m3 and the individual growers recording the lowest CWP at 1.14 kg/m3, nearly 30% less. Similarly center pivot systems showed to have the highest CWP at 1.63 kg/m3, which was 30% higher than the CWP in furrow systems. This study showcases the applicability of publicly available global remote sensing products for assessing performance of the irrigated crops at the local level in several aspects.


2021 ◽  
Vol 13 (4) ◽  
pp. 572
Author(s):  
Gintautas Mozgeris ◽  
Ivan Balenović

The pre-requisite for sustainable management of natural resources is the availability of timely, cost-effective, and comprehensive information on the status and development trends of the management object [...]


2020 ◽  
Vol 12 (15) ◽  
pp. 2497
Author(s):  
Rohan Bennett ◽  
Peter van Oosterom ◽  
Christiaan Lemmen ◽  
Mila Koeva

Land administration constitutes the socio-technical systems that govern land tenure, use, value and development within a jurisdiction. The land parcel is the fundamental unit of analysis. Each parcel has identifiable boundaries, associated rights, and linked parties. Spatial information is fundamental. It represents the boundaries between land parcels and is embedded in cadastral sketches, plans, maps and databases. The boundaries are expressed in these records using mathematical or graphical descriptions. They are also expressed physically with monuments or natural features. Ideally, the recorded and physical expressions should align, however, in practice, this may not occur. This means some boundaries may be physically invisible, lacking accurate documentation, or potentially both. Emerging remote sensing tools and techniques offers great potential. Historically, the measurements used to produce recorded boundary representations were generated from ground-based surveying techniques. The approach was, and remains, entirely appropriate in many circumstances, although it can be timely, costly, and may only capture very limited contextual boundary information. Meanwhile, advances in remote sensing and photogrammetry offer improved measurement speeds, reduced costs, higher image resolutions, and enhanced sampling granularity. Applications of unmanned aerial vehicles (UAV), laser scanning, both airborne and terrestrial (LiDAR), radar interferometry, machine learning, and artificial intelligence techniques, all provide examples. Coupled with emergent societal challenges relating to poverty reduction, rapid urbanisation, vertical development, and complex infrastructure management, the contemporary motivation to use these new techniques is high. Fundamentally, they enable more rapid, cost-effective, and tailored approaches to 2D and 3D land data creation, analysis, and maintenance. This Special Issue hosts papers focusing on this intersection of emergent remote sensing tools and techniques, applied to domain of land administration.


1974 ◽  
Vol 52 (1) ◽  
pp. 69-75 ◽  
Author(s):  
Katharine D. Hobson

Orbiniella nuda, new species, is newly described from Washington. Naineris quadricuspida, Pygospio elegans, Pherusa negligens, Asclerocheilus beringianus, Euzonus williamsi, Barantolla americana, Decamastus gracilis, Mediomastus capensis, and Stygocapitella subterranea are newly recorded from Washington or from Washington and British Columbia. Most of these species have not previously been reported from the cold temperate northeastern Pacific Ocean. In addition, new descriptive information is provided for some species.


Sign in / Sign up

Export Citation Format

Share Document