scholarly journals Three-Dimensional Molecular Cartography of the Caribbean Reef-Building Coral Orbicella faveolata

2021 ◽  
Vol 8 ◽  
Author(s):  
Mark Little ◽  
Emma E. George ◽  
Milou G. I. Arts ◽  
Jade Shivak ◽  
Sean Benler ◽  
...  

All organisms host a diversity of associated viruses, bacteria, and protists, collectively defined as the holobiont. While scientific advancements have enhanced the understanding of the functional roles played by various components of the holobiont, there is a growing need to integrate multiple types of molecular data into spatially and temporally resolved frameworks. To that end, we mapped 16S and 18S rDNA metabarcoding, metatranscriptomics, and metabolomic data onto three-dimensional reconstructions of coral colonies to examine microbial diversity, microbial gene expression, and biochemistry on two colonies of the ecologically important, reef-building coral, Orbicella faveolata and their competitors (i.e., adjacent organisms interacting with the corals: fleshy algae, turf algae, hydrozoans, and other corals). Overall, no statistically significant spatial patterns were observed among the samples for any of the data types; instead, strong signatures of the macroorganismal hosts (e.g., coral, algae, hydrozoa) were detected, in the microbiome, the transcriptome, and the metabolome. The 16S rDNA analysis demonstrated higher abundance of Firmicutes in the coral microbiome than in its competitors. A single bacterial amplicon sequence variant from the genus Clostridium was found exclusively in all O. faveolata samples. In contrast to microbial taxa, a portion of the functionally annotated bacterial RNA transcripts (6.86%) and metabolites (1.95%) were ubiquitous in all coral and competitor samples. Machine learning analysis of microbial transcripts revealed elevated T7-like cyanophage-encoded photosystem II transcripts in O. faveolata samples, while sequences involved in bacterial cell division were elevated in turf algal and interface samples. Similar analysis of metabolites revealed that bacterial-produced antimicrobial and antifungal compounds were highly enriched in coral samples. This study provides insight into the spatial and biological patterning of the coral microbiome, transcriptome, and metabolome.

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 884
Author(s):  
Chia-Ming Tsai ◽  
Yi-Horng Lai ◽  
Yung-Da Sun ◽  
Yu-Jen Chung ◽  
Jau-Woei Perng

Numerous sensors can obtain images or point cloud data on land, however, the rapid attenuation of electromagnetic signals and the lack of light in water have been observed to restrict sensing functions. This study expands the utilization of two- and three-dimensional detection technologies in underwater applications to detect abandoned tires. A three-dimensional acoustic sensor, the BV5000, is used in this study to collect underwater point cloud data. Some pre-processing steps are proposed to remove noise and the seabed from raw data. Point clouds are then processed to obtain two data types: a 2D image and a 3D point cloud. Deep learning methods with different dimensions are used to train the models. In the two-dimensional method, the point cloud is transferred into a bird’s eye view image. The Faster R-CNN and YOLOv3 network architectures are used to detect tires. Meanwhile, in the three-dimensional method, the point cloud associated with a tire is cut out from the raw data and is used as training data. The PointNet and PointConv network architectures are then used for tire classification. The results show that both approaches provide good accuracy.


2020 ◽  
Author(s):  
Fernando Lopes ◽  
Larissa R Oliveira ◽  
Amanda Kessler ◽  
Yago Beux ◽  
Enrique Crespo ◽  
...  

Abstract The phylogeny and systematics of fur seals and sea lions (Otariidae) have long been studied with diverse data types, including an increasing amount of molecular data. However, only a few phylogenetic relationships have reached acceptance because of strong gene-tree species tree discordance. Divergence times estimates in the group also vary largely between studies. These uncertainties impeded the understanding of the biogeographical history of the group, such as when and how trans-equatorial dispersal and subsequent speciation events occurred. Here we used high-coverage genome-wide sequencing for 14 of the 15 species of Otariidae to elucidate the phylogeny of the family and its bearing on the taxonomy and biogeographical history. Despite extreme topological discordance among gene trees, we found a fully supported species tree that agrees with the few well-accepted relationships and establishes monophyly of the genus Arctocephalus. Our data support a relatively recent trans-hemispheric dispersal at the base of a southern clade, which rapidly diversified into six major lineages between 3 to 2.5 Ma. Otaria diverged first, followed by Phocarctos and then four major lineages within Arctocephalus. However, we found Zalophus to be non-monophyletic, with California (Z. californianus) and Steller sea lions (Eumetopias jubatus) grouping closer than the Galapagos sea lion (Z. wollebaeki) with evidence for introgression between the two genera. Overall, the high degree of genealogical discordance was best explained by incomplete lineage sorting resulting from quasi-simultaneous speciation within the southern clade with introgresssion playing a subordinate role in explaining the incongruence among and within prior phylogenetic studies of the family.


2018 ◽  
Vol 201 (4) ◽  
Author(s):  
Tomáš Kouba ◽  
Jiří Pospíšil ◽  
Jarmila Hnilicová ◽  
Hana Šanderová ◽  
Ivan Barvík ◽  
...  

ABSTRACT Bacterial RNA polymerase (RNAP) is essential for gene expression and as such is a valid drug target. Hence, it is imperative to know its structure and dynamics. Here, we present two as-yet-unreported forms of Mycobacterium smegmatis RNAP: core and holoenzyme containing σA but no other factors. Each form was detected by cryo-electron microscopy in two major conformations. Comparisons of these structures with known structures of other RNAPs reveal a high degree of conformational flexibility of the mycobacterial enzyme and confirm that region 1.1 of σA is directed into the primary channel of RNAP. Taken together, we describe the conformational changes of unrestrained mycobacterial RNAP. IMPORTANCE We describe here three-dimensional structures of core and holoenzyme forms of mycobacterial RNA polymerase (RNAP) solved by cryo-electron microscopy. These structures fill the thus-far-empty spots in the gallery of the pivotal forms of mycobacterial RNAP and illuminate the extent of conformational dynamics of this enzyme. The presented findings may facilitate future designs of antimycobacterial drugs targeting RNAP.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Nicole G. Harper ◽  
Jason M. Wilken ◽  
Richard R. Neptune

Stair ascent is an activity of daily living and necessary for maintaining independence in community environments. One challenge to improving an individual's ability to ascend stairs is a limited understanding of how lower-limb muscles work in synergy to perform stair ascent. Through dynamic coupling, muscles can perform multiple functions and require contributions from other muscles to perform a task successfully. The purpose of this study was to identify the functional roles of individual muscles during stair ascent and the mechanisms by which muscles work together to perform specific subtasks. A three-dimensional (3D) muscle-actuated simulation of stair ascent was generated to identify individual muscle contributions to the biomechanical subtasks of vertical propulsion, anteroposterior (AP) braking and propulsion, mediolateral control and leg swing. The vasti and plantarflexors were the primary contributors to vertical propulsion during the first and second halves of stance, respectively, while gluteus maximus and hamstrings were the primary contributors to forward propulsion during the first and second halves of stance, respectively. The anterior and posterior components of gluteus medius were the primary contributors to medial control, while vasti and hamstrings were the primary contributors to lateral control during the first and second halves of stance, respectively. To control leg swing, antagonistic muscles spanning the hip, knee, and ankle joints distributed power from the leg to the remaining body segments. These results compliment previous studies analyzing stair ascent and provide further rationale for developing targeted rehabilitation strategies to address patient-specific deficits in stair ascent.


2020 ◽  
Author(s):  
Mike A. Nalls ◽  
Cornelis Blauwendraat ◽  
Lana Sargent ◽  
Dan Vitale ◽  
Hampton Leonard ◽  
...  

SUMMARYBackgroundPrevious research using genome wide association studies (GWAS) has identified variants that may contribute to lifetime risk of multiple neurodegenerative diseases. However, whether there are common mechanisms that link neurodegenerative diseases is uncertain. Here, we focus on one gene, GRN, encoding progranulin, and the potential mechanistic interplay between genetic risk, gene expression in the brain and inflammation across multiple common neurodegenerative diseases.MethodsWe utilized GWAS, expression quantitative trait locus (eQTL) mapping and Bayesian colocalization analyses to evaluate potential causal and mechanistic inferences. We integrate various molecular data types from public resources to infer disease connectivity and shared mechanisms using a data driven process.FindingseQTL analyses combined with GWAS identified significant functional associations between increasing genetic risk in the GRN region and decreased expression of the gene in Parkinson’s, Alzheimer’s and amyotrophic lateral sclerosis. Additionally, colocalization analyses show a connection between blood based inflammatory biomarkers relating to platelets and GRN expression in the frontal cortex.InterpretationGRN expression mediates neuroinflammation function related to general neurodegeneration. This analysis suggests shared mechanisms for Parkinson’s, Alzheimer’s and amyotrophic lateral sclerosis.FundingNational Institute on Aging, National Institute of Neurological Disorders and Stroke, and the Michael J. Fox Foundation.


2017 ◽  
Vol 18 (1) ◽  
Author(s):  
Qingjiao Li ◽  
Harianto Tjong ◽  
Xiao Li ◽  
Ke Gong ◽  
Xianghong Jasmine Zhou ◽  
...  

Abstract Background Genome structures are dynamic and non-randomly organized in the nucleus of higher eukaryotes. To maximize the accuracy and coverage of three-dimensional genome structural models, it is important to integrate all available sources of experimental information about a genome’s organization. It remains a major challenge to integrate such data from various complementary experimental methods. Here, we present an approach for data integration to determine a population of complete three-dimensional genome structures that are statistically consistent with data from both genome-wide chromosome conformation capture (Hi-C) and lamina-DamID experiments. Results Our structures resolve the genome at the resolution of topological domains, and reproduce simultaneously both sets of experimental data. Importantly, this data deconvolution framework allows for structural heterogeneity between cells, and hence accounts for the expected plasticity of genome structures. As a case study we choose Drosophila melanogaster embryonic cells, for which both data types are available. Our three-dimensional genome structures have strong predictive power for structural features not directly visible in the initial data sets, and reproduce experimental hallmarks of the D. melanogaster genome organization from independent and our own imaging experiments. Also they reveal a number of new insights about genome organization and its functional relevance, including the preferred locations of heterochromatic satellites of different chromosomes, and observations about homologous pairing that cannot be directly observed in the original Hi-C or lamina-DamID data. Conclusions Our approach allows systematic integration of Hi-C and lamina-DamID data for complete three-dimensional genome structure calculation, while also explicitly considering genome structural variability.


2016 ◽  
Vol 32 (17) ◽  
pp. i413-i420 ◽  
Author(s):  
Nanne Aben ◽  
Daniel J. Vis ◽  
Magali Michaut ◽  
Lodewyk F.A. Wessels

2017 ◽  
Vol 14 (2) ◽  
Author(s):  
Noël Malod-Dognin ◽  
Nataša Pržulj

AbstractMapping the complete functional layout of a cell and understanding the cross-talk between different processes are fundamental challenges. They elude us because of the incompleteness and noisiness of molecular data and because of the computational intractability of finding the exact answer. We perform a simple integration of three types of baker’s yeast omics data to elucidate the functional organization and lines of cross-functional communication. We examine protein–protein interaction (PPI), co-expression (COEX) and genetic interaction (GI) data, and explore their relationship with the gold standard of functional organization, the Gene Ontology (GO). We utilize a simple framework that identifies functional cross-communication lines in each of the three data types, in GO, and collectively in the integrated model of the three omics data types; we present each of them in our new Functional Organization Map (FOM) model. We compare the FOMs of the three omics datasets with the FOM of GO and find that GI is in best agreement with GO, followed COEX and PPI. We integrate the three FOMs into a unified FOM and find that it is in better agreement with the FOM of GO than those of any omics dataset alone, demonstrating functional complementarity of different omics data.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Piotr Szwedziak ◽  
Qing Wang ◽  
Tanmay A M Bharat ◽  
Matthew Tsim ◽  
Jan Löwe

Membrane constriction is a prerequisite for cell division. The most common membrane constriction system in prokaryotes is based on the tubulin homologue FtsZ, whose filaments in E. coli are anchored to the membrane by FtsA and enable the formation of the Z-ring and divisome. The precise architecture of the FtsZ ring has remained enigmatic. In this study, we report three-dimensional arrangements of FtsZ and FtsA filaments in C. crescentus and E. coli cells and inside constricting liposomes by means of electron cryomicroscopy and cryotomography. In vivo and in vitro, the Z-ring is composed of a small, single-layered band of filaments parallel to the membrane, creating a continuous ring through lateral filament contacts. Visualisation of the in vitro reconstituted constrictions as well as a complete tracing of the helical paths of the filaments with a molecular model favour a mechanism of FtsZ-based membrane constriction that is likely to be accompanied by filament sliding.


Sign in / Sign up

Export Citation Format

Share Document