scholarly journals Costs and Limitations of Marine Synechococcus Blue-Green Chromatic Acclimation

2021 ◽  
Vol 8 ◽  
Author(s):  
Raisha Lovindeer ◽  
Lawrence Abbott ◽  
Hannah Medina ◽  
Katherine R. M. Mackey

Benefits and trade-offs of blue/green chromatic acclimation (CA4) have received limited study. We investigated the energetic costs associated with executing chromatic acclimation using a fluorescence-based calculation of light use efficiency. Using laboratory cultures and artificial light environments, we show that the delayed response to acclimation known to occur in marine Synechococcus acclimating strains (generalists) in green light do not reduce light use efficiency in green light, but that only one generalist, RCC307, with a much smaller range of acclimation, had higher light use efficiency than blue and green light specialist strains. Generalists with a wider acclimation range either had the same or >30% lower light use efficiencies in blue and green light environments. From this work, we propose that advantages from CA4 may not be geared at direct competition with other Synechococcus specialists with fixed pigment types, but may serve to expand the ecological range of Synechococcus in spectral competition with other genera. As all eight Synechococcus strains tested had higher light use efficiency in green light, regardless of a fixed or flexible light harvesting strategy, we add evidence to the suitability of the Synechococcus genus to greener ocean niches, whether stable, or variable.

Nature Plants ◽  
2020 ◽  
Vol 6 (8) ◽  
pp. 1044-1053 ◽  
Author(s):  
Vincenzo Mascoli ◽  
Luca Bersanini ◽  
Roberta Croce

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Dwi Ariyanti ◽  
Kazunori Ikebukuro ◽  
Koji Sode

Abstract Background The development of multiple gene expression systems, especially those based on the physical signals, such as multiple color light irradiations, is challenging. Complementary chromatic acclimation (CCA), a photoreversible process that facilitates the control of cellular expression using light of different wavelengths in cyanobacteria, is one example. In this study, an artificial CCA systems, inspired by type III CCA light-regulated gene expression, was designed by employing a single photosensor system, the CcaS/CcaR green light gene expression system derived from Synechocystis sp. PCC6803, combined with G-box (the regulator recognized by activated CcaR), the cognate cpcG2 promoter, and the constitutively transcribed promoter, the PtrcΔLacO promoter. Results One G-box was inserted upstream of the cpcG2 promoter and a reporter gene, the rfp gene (green light-induced gene expression), and the other G-box was inserted between the PtrcΔLacO promoter and a reporter gene, the bfp gene (red light-induced gene expression). The Escherichia coli transformants with plasmid-encoded genes were evaluated at the transcriptional and translational levels under red or green light illumination. Under green light illumination, the transcription and translation of the rfp gene were observed, whereas the expression of the bfp gene was repressed. Under red light illumination, the transcription and translation of the bfp gene were observed, whereas the expression of the rfp gene was repressed. During the red and green light exposure cycles at every 6 h, BFP expression increased under red light exposure while RFP expression was repressed, and RFP expression increased under green light exposure while BFP expression was repressed. Conclusion An artificial CCA system was developed to realize a multiple gene expression system, which was regulated by two colors, red and green lights, using a single photosensor system, the CcaS/CcaR system derived from Synechocystis sp. PCC6803, in E. coli. The artificial CCA system functioned repeatedly during red and green light exposure cycles. These results demonstrate the potential application of this CCA gene expression system for the production of multiple metabolites in a variety of microorganisms, such as cyanobacteria.


2021 ◽  
Author(s):  
Laura J. Williams ◽  
Ethan E. Butler ◽  
Jeannine Cavender‐Bares ◽  
Artur Stefanski ◽  
Karen E. Rice ◽  
...  

2018 ◽  
Vol 425 ◽  
pp. 35-44 ◽  
Author(s):  
Timothy J. Albaugh ◽  
Thomas R. Fox ◽  
Chris A. Maier ◽  
Otávio C. Campoe ◽  
Rafael A. Rubilar ◽  
...  

2022 ◽  
Vol 295 ◽  
pp. 110802
Author(s):  
Hao Zhou ◽  
Rhydian Beynon-Davies ◽  
Nicola Carslaw ◽  
Ian C. Dodd ◽  
Kirsti Ashworth

2021 ◽  
Author(s):  
David Sandoval ◽  
Iain Colin Prentice

<p>The emergent spatial organization of ecosystems in elevational gradients suggest that some ecosystem processes, important enough to shape morphological traits, must show similar patterns.</p><p>The most important of these processes, gross primary production (GPP), usually (albeit with some exceptions) decreases with elevation. This was previously thought to be a direct consequence either of the decrease in temperature, or the decrease of incident light due to cloud cover. However, some recent developments in photosynthetic theory, plus the unprecedented availability of ecophysiological data, support the hypothesis that plants acclimate (optimize) their photosynthetic traits to the environment. In this new theoretical context, the temperature is no longer considered as a major constraining factor, except when either freezing or excessively high temperatures inhibit plant function generally.</p><p>Two of the most important photosynthetic traits, the maximum rate of carboxylation (V<sub>CMAX</sub>) and the intrinsic quantum efficiency (φ<sub>o</sub>), vary in opposite directions with increasing elevation. Plants tend to increase V<sub>CMAX</sub> to compensate for a decrease in the ratio leaf-internal to ambient partial pressures of CO<sub>2</sub>, while φ<sub>o</sub> increases with temperature up to a plateau. To explore how these different responses, documented at leaf level, converge in emergent spatial patterns at ecosystem scale we considered how elevation shape light use efficiency (defined as the ratio of CO<sub>2</sub> assimilated over light absorbed) over mountain regions worldwide. We used data from eddy-covariance flux towers, from different networks, located in mountain regions around the world, adding up to 618 station-years of record. To complement our analysis, we included theoretical predictions using an optimality model (P-model) and evaluated changes in the spatial pattern with simulation experiments.</p><p>Empirically we found an asymptotic response of LUE to the average daytime temperature during the growing season with increasing elevation, and a small, but globally consistent effect of elevation on LUE. We propose a theoretical explanation for the observation that temperature differences have little impact on the biogeographical pattern of LUE, but we also find that different assumptions on the acclimation of the maximum rate of electron transport (J<sub>MAX</sub>) and φ<sub>o</sub> change this pattern.</p>


HortScience ◽  
2018 ◽  
Vol 53 (10) ◽  
pp. 1416-1422 ◽  
Author(s):  
Giverson Mupambi ◽  
Stefano Musacchi ◽  
Sara Serra ◽  
Lee A. Kalcsits ◽  
Desmond R. Layne ◽  
...  

Globally, apple production often occurs in semiarid climates characterized by high summer temperatures and solar radiation. Heat stress events occur regularly during the growing season in these regions. For example, in the semiarid eastern half of Washington State, historic weather data show that, on average, 33% of the days during the growing season exceed 30 °C. To mediate some of the effects of heat stress, protective netting (PN) can be used to reduce the occurrence of fruit sunburn. However, the impacts of reduced solar radiation in a high light environment on light-use efficiency and photosynthesis are poorly understood. We sought to understand the ecophysiological response of apple (Malus domestica Borkh. cv. Honeycrisp) under blue photoselective PN during days with low (26.6 °C), moderate (33.7 °C), or high (38.1 °C) ambient temperatures. Two treatments were evaluated; an uncovered control and blue photoselective PN. Maximum photochemical efficiency of PSII, or photosystem II (Fv/Fm) was significantly greater at all measurement times under blue photoselective PN compared with the control on days with high ambient temperatures. Fv/Fm dropped below 0.79, which is considered the threshold for stress, at 1000 hr in the control and at 1200 hr under blue photoselective PN on a day with high ambient temperature. On days with low or moderate ambient temperatures, Fv/Fm was significantly greater under blue photoselective PN at 1400 hr, which coincided with the peak in solar radiation. ‘Honeycrisp’ apple exhibited dynamic photoinhibition as shown by the diurnal decline in Fv/Fm. Quantum photosynthetic yield of PSII (ΦPSII) was also generally greater under blue photoselective PN compared with the control for days with moderate or high ambient temperatures. Photochemical reflectance index (ΔPRI), the difference in reflectance between a stress-responsive and nonstress-responsive wavelength, was greater under PN compared with the control on the day with high ambient temperatures, with no differences observed under low or moderate ambient temperatures. Leaf gas exchange did not show noticeable improvement under blue photoselective netting when compared with the control despite the improvement in leaf-level photosynthetic light use efficiency. In conclusion, PN reduced incoming solar radiation, improved leaf-level photosynthetic light use efficiency, and reduced the symptoms of photoinhibition in a high-light, arid environment.


Sign in / Sign up

Export Citation Format

Share Document