scholarly journals iTRAQ-Based Quantitative Proteomic Analysis Reveals Toxicity Mechanisms in Chlamys farreri Exposed to Okadaic Acid

2021 ◽  
Vol 8 ◽  
Author(s):  
Xin Wang ◽  
Dan Wang ◽  
Tianyu Zhang ◽  
Qianqian Zhang ◽  
Jianmin Zhao

Okadaic acid (OA), produced by dinoflagellates during harmful algal blooms, is a principal diarrhetic shellfish poisoning toxin. This toxin poses a potential threat to bivalves with economic values. To better understand the toxicity mechanism of OA to bivalves, in this study, oxidative stress biomarkers (superoxide dismutase, SOD; catalase, CAT; glutathione S-transferase, GST; malondialdehyde, MDA) and the expression of detoxification genes (heat shock protein 70, HSP70; heat shock protein 90, HSP90; cytochrome P450, CYP450) were assessed in the gills of scallops Chlamys farreri after 24 h, 48 h and 96 h exposure to OA. In addition, the digestive glands of scallops exposed to OA for 96 h were dissected for an iTRAQ based quantitative proteomic analysis. The results of OA exposure experiments showed that OA induces oxidative stress and significant enhancement of the expression of detoxification genes in scallops. The proteomics analysis revealed that 159 proteins altered remarkably in OA-treated scallops, and these proteins were involved in phagosomes, regulation of actin cytoskeleton, adherens junction, tight junction, and focal adhesion. Amino acid biosynthesis, carbon metabolism, pentose phosphate pathway, fructose and mannose metabolism in the digestive glands were also significantly impacted. Our data shed new insights on the molecular responses and toxicity mechanisms of C. farreri to OA.

2020 ◽  
Vol 169 (5) ◽  
pp. 695-697
Author(s):  
I. M. Madaeva ◽  
N. A. Kurashova ◽  
N. V. Semenova ◽  
E. B. Ukhinov ◽  
S. I. Kolesnikov ◽  
...  

2010 ◽  
Vol 169 (1-2) ◽  
pp. 62-75 ◽  
Author(s):  
Joseph V. Moxon ◽  
E. James LaCourse ◽  
Hazel A. Wright ◽  
Samirah Perally ◽  
Mark C. Prescott ◽  
...  

2017 ◽  
Vol 22 (3) ◽  
pp. 357-369 ◽  
Author(s):  
Daiana G. Alvarez-Olmedo ◽  
Veronica S. Biaggio ◽  
Geremy A. Koumbadinga ◽  
Nidia N. Gómez ◽  
Chunhua Shi ◽  
...  

2017 ◽  
Vol 95 (6) ◽  
pp. 732-742 ◽  
Author(s):  
Abdelaziz M. Hussein ◽  
Khaled M. Abbas ◽  
Osama A. Abulseoud ◽  
El-Hussainy M.A. El-Hussainy

The present study investigated the effects of ferulic acid (FA) on pentylenetetrazole (PTZ)-induced seizures, oxidative stress markers (malondialdehyde (MDA), catalase, and reduced glutathione (GSH)), connexin (Cx) 43, heat shock protein 70 (Hsp 70), and monoamines (serotonin (5-HT) and norepinephrine (NE)) levels in a rat model of PTZ-induced kindling. Sixty Sprague Dawley rats were divided into 5 equal groups: (a) normal group; (b) FA group: normal rats received FA at a dose of 40 mg/kg daily; (c) PTZ group: normal rats received PTZ at a dose of 50 mg/kg i.p. on alternate days for 15 days; (d) FA-before group: treatment was the same as for the PTZ group, except rats received FA; and (e) FA-after group: rats received FA from sixth dose of PTZ. PTZ caused a significant increase in MDA, Cx43, and Hsp70 along with a significant decrease in GSH, 5-HT, and NE levels and CAT activity in the hippocampus (p < 0.05). Pre- and post-treatment with FA caused significant improvement in behavioral parameters, MDA, CAT, GSH, 5-HT, NE, Cx43 expression, and Hsp70 expression in the hippocampal region (p < 0.05). We conclude that FA has neuroprotective effects in PTZ-induced epilepsy, which might be due to attenuation of oxidative stress and Cx43 expression and upregulation of neuroprotective Hsp70 and neurotransmitters (5-HT and NE).


1999 ◽  
Vol 4 (2) ◽  
pp. 129 ◽  
Author(s):  
Ulrika Härndahl ◽  
Roberta Buffoni Hall ◽  
Katherine W. Osteryoung ◽  
Elizabeth Vierling ◽  
Janet F. Bornman ◽  
...  

2011 ◽  
Vol 110 (4) ◽  
pp. 935-942 ◽  
Author(s):  
Ashley J. Smuder ◽  
Andreas N. Kavazis ◽  
Kisuk Min ◽  
Scott K. Powers

Doxorubicin (Dox) is a potent antitumor agent used in cancer treatment. Unfortunately, Dox is myotoxic and results in significant reductions in skeletal muscle mass and function. Complete knowledge of the mechanism(s) by which Dox induces toxicity in skeletal muscle is incomplete, but it is established that Dox-induced toxicity is associated with increased generation of reactive oxygen species and oxidative damage within muscle fibers. Since muscular exercise promotes the expression of numerous cytoprotective proteins (e.g., antioxidant enzymes, heat shock protein 72), we hypothesized that muscular exercise will attenuate Dox-induced damage in exercise-trained muscle fibers. To test this postulate, Sprague-Dawley rats were randomly assigned to the following groups: sedentary, exercise, sedentary with Dox, or exercise with Dox. Our results show increased oxidative stress and activation of cellular proteases (calpain and caspase-3) in skeletal muscle of animals treated with Dox. Importantly, our findings reveal that exercise can prevent the Dox-induced oxidative damage and protease activation in the trained muscle. This exercise-induced protection against Dox-induced toxicity may be due, at least in part, to an exercise-induced increase in muscle levels of antioxidant enzymes and heat shock protein 72. Together, these novel results demonstrate that muscular exercise is a useful countermeasure that can protect skeletal muscle against Dox treatment-induced oxidative stress and protease activation in skeletal muscles.


Sign in / Sign up

Export Citation Format

Share Document