scholarly journals Development and Multi-Data Set Verification of an RNA Binding Protein Signature for Prognosis Prediction in Glioma

2021 ◽  
Vol 8 ◽  
Author(s):  
Chunpeng Sheng ◽  
Zhihua Chen ◽  
Jianwei Lei ◽  
Jianming Zhu ◽  
Shuxin Song

Objective: Increasing evidence emphasizes the clinical implications of RNA binding proteins (RBPs) in cancers. This study aimed to develop a RBP signature for predicting prognosis in glioma.Methods: Two glioma datasets as training (n = 693) and validation (n = 325) sets were retrieved from the CGGA database. In the training set, univariate Cox regression analysis was conducted to screen prognosis-related RBPs based on differentially expressed RBPs between WHO grade II and IV. A ten-RBP signature was then established. The predictive efficacy was evaluated by ROCs. The applicability was verified in the validation set. The pathways involving the risk scores were analyzed by ssGSEA. scRNA-seq was utilized for evaluating their expression in different glioma cell types. Moreover, their expression was externally validated between glioma and control samples.Results: Based on 39 prognosis-related RBPs, a ten RBP signature was constructed. High risk score distinctly indicated a poorer prognosis than low risk score. AUCs were separately 0.838 and 0.822 in the training and validation sets, suggesting its well performance for prognosis prediction. Following adjustment of other clinicopathological characteristics, the signature was an independent risk factor. Various cancer-related pathways were significantly activated in samples with high risk score. The scRNA-seq identified that risk RBPs were mainly expressed in glioma malignant cells. Their high expression was also found in glioma than control samples.Conclusion: This study developed a novel RBP signature for robustly predicting prognosis of glioma following multi-data set verification. These RBPs may affect the progression of glioma.

2021 ◽  
Author(s):  
Zixuan Du ◽  
Xinyan Zhang ◽  
Zaixiang Tang

With the development of precision medicine, searching for potential biomarkers plays a major role in personalized medicine. Therefore, how to predict radiosensitivity to improve radiotherapy is a burning question. The definition of radiosensitivity is complex. Radiosensitive gene/biomarker can be useful for predicting which patients would benefit from radiotherapy. The discovery of radiosensitivity biomarkers require multiple pieces of evidence. A prediction model of breast cancer radiosensitivity based on 6 genes was established. We had put forward some supplements on the basis of this study. We found that there were no differences between high-risk scores and low-risk scores in the non-radiotherapy group. Patients who receiving radiotherapy had a significantly better overall survival than non-radiotherapy patients in the predicted low-risk score patients. Furthermore, there was no difference between radiotherapy group and non-radiotherapy group in the high-risk score group. Those results firmly supported the prediction model of radiosensitivity. In addition, building a radiosensitivity prediction model was systematically discussed. Genes of model could be screened by different methods, such as Cox regression analysis, LASSO Cox regression method, random forest algorithm and other methods. In the future, precision radiotherapy might depend on the combination of multi-omics data and high dimensional image data.


2020 ◽  
Author(s):  
Ye Liu ◽  
Zhixiang Qin ◽  
Hai Yang ◽  
Yang Gu ◽  
Kun Li

Abstract Background Hepatocellular carcinoma (HCC) represents one of the deadliest malignancies worldwide. Despite significant advances in diagnosis and treatment, the mortality rate from HCC persists at a substantial level. This research strives to establish a prognostic model based on the RNA binding proteins (RBPs) that can predict HCC patients’ OS. Methods There was an RNA-seq data set derived from the Cancer Genome Atlas (TCGA) databank which was included in our research as well as a Microarray data set (GSE14520). The differentially expressed RBPs between HCC and normal tissues were investigated in TCGA dataset. Subsequently, the TCGA data set was randomly split into a training and a testing cohort. The prognostic model of the training cohort was developed by applying univariate Cox regression and lasso Cox regression analyses and multivariate Cox regression analysis. In order to evaluate the prognostic value of the model, a comprehensive survival assessment was conducted. Results A total of 133 differentially expressed RBPs were identified. Five RBPs (RPL10L, EZH2, PPARGC1A, ZNF239, IFIT1) were used to construct the model. The model accurately predicted the prognosis of liver cancer patients in both the TCGA cohort and the GSE14520 validation cohort. HCC patients could be assigned into a high-risk group and a low-risk group by this model, and the overall survival of these two groups was significantly different. Furthermore, the risk scores obtained by our model were highly correlated with immune cell infiltration. . Conclusions Five RBPs-related prognostic models were constructed and validated to predict OS reliably in HCC individuals. It helps to identify patients at high risk of mortality with the risk prediction score, which optimizes personalized therapeutic decision-making.


Author(s):  
Yongmei Wang ◽  
Guimin Zhang ◽  
Ruixian Wang

Background: This study aims to explore the prognostic values of CT83 and CT83-related genes in lung adenocarcinoma (LUAD). Methods: We downloaded the mRNA profiles of 513 LUAD patients (RNA sequencing data) and 246 NSCLC patients (Affymetrix Human Genome U133 Plus 2.0 Array) from TCGA and GEO databases. According to the median expression of CT83, the TCGA samples were divided into high and low expression groups, and differential expression analysis between them was performed. Functional enrichment analysis of differential expression genes (DEGs) was conducted. Univariate Cox regression analysis and LASSO Cox regression analysis were performed to screen the optimal prognostic DEGs. Then we established the prognostic model. A Nomogram model was constructed to predict the overall survival (OS) probability of LUAD patients. Results: CT83 expression was significantly correlated to the prognosis of LUAD patients. A total of 59 DEGs were identified, and a predictive model was constructed based on six optimal CT83-related DEGs, including CPS1, RHOV, TNNT1, FAM83A, IGF2BP1, and GRIN2A, could effectively predict the prognosis of LUAD patients. The nomogram could reliably predict the OS of LUAD patients. Moreover, the six important immune checkpoints (CTLA4, PD1, IDO1, TDO2, LAG3, and TIGIT) were closely correlated with the Risk Score, which was also differentially expressed between the LUAD samples with high and low-Risk Scores, suggesting that the poor prognosis of LUAD patients with high-Risk Score might be due to the immunosuppressive microenvironments. Conclusion: A prognostic model based on six optimal CT83 related genes could effectively predict the prognosis of LUAD patients.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Xu Wang ◽  
Yuanmin Xu ◽  
Ting Li ◽  
Bo Chen ◽  
Wenqi Yang

Abstract Background Autophagy is an orderly catabolic process for degrading and removing unnecessary or dysfunctional cellular components such as proteins and organelles. Although autophagy is known to play an important role in various types of cancer, the effects of autophagy-related genes (ARGs) on colon cancer have not been well studied. Methods Expression profiles from ARGs in 457 colon cancer patients were retrieved from the TCGA database (https://portal.gdc.cancer.gov). Differentially expressed ARGs and ARGs related to overall patient survival were identified. Cox proportional-hazard models were used to investigate the association between ARG expression profiles and patient prognosis. Results Twenty ARGs were significantly associated with the overall survival of colon cancer patients. Five of these ARGs had a mutation rate ≥ 3%. Patients were divided into high-risk and low-risk groups based on Cox regression analysis of 8 ARGs. Low-risk patients had a significantly longer survival time than high-risk patients (p < 0.001). Univariate and multivariate Cox regression analysis showed that the resulting risk score, which was associated with infiltration depth and metastasis, could be an independent predictor of patient survival. A nomogram was established to predict 1-, 3-, and 5-year survival of colon cancer patients based on 5 independent prognosis factors, including the risk score. The prognostic nomogram with online webserver was more effective and convenient to provide information for researchers and clinicians. Conclusion The 8 ARGs can be used to predict the prognosis of patients and provide information for their individualized treatment.


2021 ◽  
Author(s):  
Shaopei Ye ◽  
Wenbin Tang ◽  
Ke Huang

Abstract Background: Autophagy is a biological process to eliminate dysfunctional organelles, aggregates or even long-lived proteins. . Nevertheless, the potential function and prognostic values of autophagy in Wilms Tumor (WT) are complex and remain to be clarifed. Therefore, we proposed to systematically examine the roles of autophagy-associated genes (ARGs) in WT.Methods: Here, we obtained differentially expressed autophagy-related genes (ARGs) between healthy and Wilms tumor from Therapeutically Applicable Research To Generate Effective Treatments(TARGET) and The Cancer Genome Atlas (TCGA) database. The functionalities of the differentially expressed ARGs were analyzed using Gene Ontology. Then univariate COX regression analysis and multivariate COX regression analysis were performed to acquire nine autophagy genes related to WT patients’ survival. According to the risk score, the patients were divided into high-risk and low-risk groups. The Kaplan-Meier curve demonstrated that patients with a high-risk score tend to have a poor prognosis.Results: Eighteen DEARGs were identifed, and nine ARGs were fnally utilized to establish the FAGs based signature in the TCGA cohort. we found that patients in the high-risk group were associated with mutations in TP53. We further conducted CIBERSORT analysis, and found that the infiltration of Macrophage M1 was increased in the high-risk group. Finally, the expression levels of crucial ARGs were verifed by the experiment, which were consistent with our bioinformatics analysis.Conclusions: we emphasized the clinical significance of autophagy in WT, established a prediction system based on autophagy, and identified a promising therapeutic target of autophagy for WT.


2021 ◽  
Author(s):  
Sijia Li ◽  
Hongyang Zhang ◽  
Wei Li

Abstract Background: The purpose of our study is establishing a model based on ferroptosis-related genes predicting the prognosis of patients with head and neck squamous cell carcinoma (HNSCC).Methods: In our study, transcriptome and clinical data of HNSCC patients were from The Cancer Genome Atlas, ferroptosis-related genes and pathways were from Ferroptosis Signatures Database. Differentially expressed genes (DEGs) were screened by comparing tumor and adjacent normal tissues. Functional enrichment analysis of DEGs, protein-protein interaction network and gene mutation examination were applied. Univariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) regression were used to identified DEGs. The model was constructed by multivariate Cox regression analysis and verified by Kaplan-Meier analysis. The relationship between risk scores and other clinical features was also analyzed. Univariate and multivariate Cox analysis was used to verified the independence of our model. The model was evaluated by receiver operating characteristic analysis and calculation of the area under the curve (AUC). A nomogram model based on risk score, age, gender and TNM stages was constructed.Results: We analyzed data including 500 tumor tissues and 44 adjacent normal tissues and 259 ferroptosis-related genes, then obtained 73 DEGs. Univariate Cox regression analysis screened out 16 genes related to overall survival, and LASSO analysis fingered out 12 of them with prognostic value. A risk score model based on these 12 genes was constructed by multivariate Cox regression analysis. According to the median risk score, patients were divided into high-risk group and low-risk group. The survival rate of high-risk group was significantly lower than that of low-risk group in Kaplan-Meier curve. Risk scores were related to T and grade. Univariate and multivariate Cox analysis showed our model was an independent prognostic factor. The AUC was 0.669. The nomogram showed high accuracy predicting the prognosis of HNSCC patients.Conclusion: Our model based on 12 ferroptosis-related genes performed excellently in predicting the prognosis of HNSCC patients. Ferroptosis-related genes may be promising biomarkers for HNSCC treatment and prognosis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Fen Liu ◽  
Zongcheng Yang ◽  
Lixin Zheng ◽  
Wei Shao ◽  
Xiujie Cui ◽  
...  

BackgroundGastric cancer is a common gastrointestinal malignancy. Since it is often diagnosed in the advanced stage, its mortality rate is high. Traditional therapies (such as continuous chemotherapy) are not satisfactory for advanced gastric cancer, but immunotherapy has shown great therapeutic potential. Gastric cancer has high molecular and phenotypic heterogeneity. New strategies for accurate prognostic evaluation and patient selection for immunotherapy are urgently needed.MethodsWeighted gene coexpression network analysis (WGCNA) was used to identify hub genes related to gastric cancer progression. Based on the hub genes, the samples were divided into two subtypes by consensus clustering analysis. After obtaining the differentially expressed genes between the subtypes, a gastric cancer risk model was constructed through univariate Cox regression, least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox regression analysis. The differences in prognosis, clinical features, tumor microenvironment (TME) components and immune characteristics were compared between subtypes and risk groups, and the connectivity map (CMap) database was applied to identify potential treatments for high-risk patients.ResultsWGCNA and screening revealed nine hub genes closely related to gastric cancer progression. Unsupervised clustering according to hub gene expression grouped gastric cancer patients into two subtypes related to disease progression, and these patients showed significant differences in prognoses, TME immune and stromal scores, and suppressive immune checkpoint expression. Based on the different expression patterns between the subtypes, we constructed a gastric cancer risk model and divided patients into a high-risk group and a low-risk group based on the risk score. High-risk patients had a poorer prognosis, higher TME immune/stromal scores, higher inhibitory immune checkpoint expression, and more immune characteristics suitable for immunotherapy. Multivariate Cox regression analysis including the age, stage and risk score indicated that the risk score can be used as an independent prognostic factor for gastric cancer. On the basis of the risk score, we constructed a nomogram that relatively accurately predicts gastric cancer patient prognoses and screened potential drugs for high-risk patients.ConclusionsOur results suggest that the 7-gene signature related to tumor progression could predict the clinical prognosis and tumor immune characteristics of gastric cancer.


2021 ◽  
Vol 20 ◽  
pp. 153303382110195
Author(s):  
Ting Li ◽  
Wenjia Hui ◽  
Halina Halike ◽  
Feng Gao

Background: Colorectal cancer (CRC) is a kind of gastrointestinal tumor with serious high morbidity and mortality. Several reports have implicated the disorder of RNA-binding proteins (RBPs) in plenty of tumors, associating it to tumorigenesis and disease progression. The study is intended to construct novel prognostic biomarkers associated with CRC patients. Methods: Data of gene expression was acquired from the TCGA database, prognosis-related genes were selected. Besides, we analyzed GO and KEGG pathways. Univariate and multivariate Cox analyses were performed to generate a prognostic-related gene signature, which was evaluated by the Kaplan-Meier (K-M) and the Receiver Operating Characteristic (ROC) curve. The independent prognostic factor was established by survival analysis. GSE38832 dataset was used to validate the signature. Finally, expression of 8 genes was further confirmed by qRT-PCR in SW480 and SW620 cell lines. Results: We obtained 224 differentially expressed RBPS in total, of which 78 were downregulated and 146 were upregulated. Univariate COX analysis was conducted in the TCGA cohort to select 13 RBPs with P < 0.005, stepwise multivariate COX regression analysis was used to construct an 8—RBP signature (TERT, PPARGC1A, BRCA1, CELF4, TDRD7, LUZP4, PNLDC1, ZC3H12C). Based on the model, systematic analysis illustrated that a high risk score was obviously connected to a poor prognosis. The prognostic value of the risk score was validated in GSE38832 dataset, indicating that the risk model was accurate and effective. The prognostic signature-based risk score was identified as an independent prognostic indicator for CRC. The expression results of qRT-PCR were consistent with the results of differential expression analysis. Conclusions: The eight-RBP signature can predict the survival of CRC patients and potentially act as CRC prognostic biomarker.


2021 ◽  
Author(s):  
Cheng Lijing ◽  
Yuan Meiling ◽  
Li Shu ◽  
Chen Junjing ◽  
Zhong Shupeng ◽  
...  

Abstract Background: Brain glioblastoma (GBM) is the most common primary malignant tumor of intracranial tumors. The prognosis of this disease is extremely poor. While the introduction of IFN-β regimen in the treatment of gliomas has significantly improved the outcome of patients, the underlying mechanism remains to be elucidated. Materials and methods: mRNA expression profiles and clinicopathological data were downloaded from TCGA-GBM and GSE83300 data set from the GEO. Univariate Cox regression analysis and lasso Cox regression model established a novel four‐gene IFN-β signature (including PRDX1, SEC61B, XRCC5, and BCL2L2) for GBM prognosis prediction. Further, GBM samples (n=50) and normal brain tissues (n=50) were then used for real-time polymerase chain reaction (PCR) experiments. Gene Set Enrichment Analyses (GSEA) was performed to further understand the underlying molecular mechanisms. Pearson correlation was applied to calculate the correlation between the lncRNAs and IFN-β associated genes. A lncRNA with a correlation coefficient |R2| > 0.3 and P < 0.05 was considered to be an IFN-β associated lncRNA.Results: Patients in the high‐risk group shown significantly poorer survival than patients in the low‐risk group. The signature was found to be an independent prognostic factor for GBM survival. Furthermore, GSEA revealed several significantly enriched pathways, which might help explain the underlying mechanisms. Our study identified a novel robust four‐gene IFN-β signature for GBM prognosis prediction. The signature might contain potential biomarkers for metabolic therapy and treatment response prediction in GBM.Conclusions: Our study established a novel IFN-β associated genes signature to predict overall survival of GBM, which may help in clinical decision making for individual treatment.


2021 ◽  
Author(s):  
Wenjing GUO ◽  
Rui Chen ◽  
Hui Deng ◽  
Mengxian Zhang

Abstract Background: Glioblastoma(GBM) is a common primary malignant brain tumor with poor prognosis, and currently effective therapeutic strategies are still limited. RNA binding proteins(RBPs) dysregulation has been reported in various cancers and is closely related to tumor initiation and progression. However, little is known about the role of RBPs in GBM.Methods: We downloaded RNA-seq transcriptome from TCGA database and differently expressed RBPs were screened between tumor and normal tissues. Then we performed functional enrichment analysis of these RBPs and based on univariate and multivariate cox regression analysis, hub RBPs were identified. Furthermore, we constructed a risk model based on hub RBPs and divided patients into high- and low-risk groups based on the median risk score. To validate the model, CGGA database were conducted as a training set and then both survival analysis and ROC curve were conducted. We also developed a nomogram based on five RBPs, which made more convenient to observe each patient’s prognosis and validated the connection between patients survival and each hub RBP . Finally, we used GEPIA website to further explore the value of these hub RBPs. Results: A total 309 differently expressed RBPs were identified, including 145 downregulated and 164 upregulated RBPs. and the result indicated that they were mainly enriched in mRNA processing, RNA splicing, RNA catabolic process, RNA transport, spliceosome, ribosome and mRNA surveillance pathway. Five hub RBPs were identified and we observed that patients with high risk score were related to poor overall survival and the AUC of ROC curve was 0.752 in TCGA. The result was subsequently proved by CGGA, showing the good prediction function of the model. Then GEPIA website suggested that MRPL41, MRPL36 and FBXO17 were closely associate with OS in GBM. Conclusion: Our result may provide novel insights into pathogenesis of GBM and development of new therapeutic targets. However, further experiments in vitro and in vivo will be warranted.


Sign in / Sign up

Export Citation Format

Share Document