scholarly journals Development and Validation of a Nomogram Incorporating Colloid Osmotic Pressure for Predicting Mortality in Critically Ill Neurological Patients

2021 ◽  
Vol 8 ◽  
Author(s):  
Bo Lv ◽  
Linhui Hu ◽  
Heng Fang ◽  
Dayong Sun ◽  
Yating Hou ◽  
...  

Backgrounds: The plasma colloid osmotic pressure (COP) values for predicting mortality are not well-estimated. A user-friendly nomogram could predict mortality by incorporating clinical factors and scoring systems to facilitate physicians modify decision-making when caring for patients with serious neurological conditions.Methods: Patients were prospectively recruited from March 2017 to September 2018 from a tertiary hospital to establish the development cohort for the internal test of the nomogram, while patients recruited from October 2018 to June 2019 from another tertiary hospital prospectively constituted the validation cohort for the external validation of the nomogram. A multivariate logistic regression analysis was performed in the development cohort using a backward stepwise method to determine the best-fit model for the nomogram. The nomogram was subsequently validated in an independent external validation cohort for discrimination and calibration. A decision-curve analysis was also performed to evaluate the net benefit of the insertion decision using the nomogram.Results: A total of 280 patients were enrolled in the development cohort, of whom 42 (15.0%) died, whereas 237 patients were enrolled in the validation cohort, of which 43 (18.1%) died. COP, neurological pathogenesis and Acute Physiology and Chronic Health Evaluation II (APACHE II) score were predictors in the prediction nomogram. The derived cohort demonstrated good discriminative ability, and the area under the receiver operating characteristic curve (AUC) was 0.895 [95% confidence interval (CI), 0.840–0.951], showing good correction ability. The application of this nomogram to the validation cohort also provided good discrimination, with an AUC of 0.934 (95% CI, 0.892–0.976) and good calibration. The decision-curve analysis of this nomogram showed a better net benefit.Conclusions : A prediction nomogram incorporating COP, neurological pathogenesis and APACHE II score could be convenient in predicting mortality for critically ill neurological patients.

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Simon Sawhney ◽  
Zhi Tan ◽  
Corri Black ◽  
Brenda Hemmelgarn ◽  
Angharad Marks ◽  
...  

Abstract Background and Aims There is limited evidence to inform which people should receive follow up after AKI and for what reasons. Here we report the external validation (geographical and temporal) and potential clinical utility of two complementary models for predicting different post-discharge outcomes after AKI. We used decision curve analysis, a technique that enables visualisation of the trade-off (net benefit) between identifying true positives and avoiding false positives across a range of potential risk thresholds for a risk model. Based on decision curve analysis we compared model guided approaches to follow up after AKI with alternative strategies of standardised follow up – e.g. follow up of all people with AKI, severe AKI, or a discharge eGFR<30. Method The Alberta AKI risk model predicts the risk of stage G4 CKD at one year after AKI among those with a baseline GFR>=45 and at least 90 days survival (2004-2014, n=9973). A trial is now underway using this tool at a 10% threshold to identify high risk people who may benefit from specialist nephrology follow up. The Aberdeen AKI risk model provides complementary predictions of early mortality or unplanned readmissions within 90 days of discharge (2003, n=16453), aimed at supporting non-specialists in discharge planning, with a threshold of 20-40% considered clinically appropriate in the study. For the Alberta model we externally validated using Grampian residents with hospital AKI in 2011-2013 (n=9382). For the Aberdeen model we externally validated using all people admitted to hospital in Grampian in 2012 (n=26575). Analysis code was shared between the sites to maximise reproducibility. Results Both models discriminated well in the external validation cohorts (AUC 0.855 for CKD G4, and AUC 0.774 for death and readmissions model), but as both models overpredicted risks, recalibration was performed. For both models, decision curve analysis showed that prioritisation of patients based on the presence or severity of AKI would be inferior to a model guided approach. For predicting CKD G4 progression at one year, a strategy guided by discharge eGFR<30 was similar to a model guided approach at the prespecified 10% threshold (figure 1). In contrast for early unplanned admissions and mortality, model guided approaches were superior at the prespecified 20-40% threshold (figure 2). Conclusion In conclusion, prioritising AKI follow up is complex and standardised recommendations for all people may be an inefficient and inadequate way of guiding clinical follow-up. Guidelines for AKI follow up should consider suggesting an individualised approach both with respect to purpose and prioritisation.


2020 ◽  
Author(s):  
Ruyi Zhang ◽  
Mei Xu ◽  
Xiangxiang Liu ◽  
Miao Wang ◽  
Qiang Jia ◽  
...  

Abstract Objectives To develop a clinically predictive nomogram model which can maximize patients’ net benefit in terms of predicting the prognosis of patients with thyroid carcinoma based on the 8th edition of the AJCC Cancer Staging method. MethodsWe selected 134,962 thyroid carcinoma patients diagnosed between 2004 and 2015 from SEER database with details of the 8th edition of the AJCC Cancer Staging Manual and separated those patients into two datasets randomly. The first dataset, training set, was used to build the nomogram model accounting for 80% (94,474 cases) and the second dataset, validation set, was used for external validation accounting for 20% (40,488 cases). Then we evaluated its clinical availability by analyzing DCA (Decision Curve Analysis) performance and evaluated its accuracy by calculating AUC, C-index as well as calibration plot.ResultsDecision curve analysis showed the final prediction model could maximize patients’ net benefit. In training set and validation set, Harrell’s Concordance Indexes were 0.9450 and 0.9421 respectively. Both sensitivity and specificity of three predicted time points (12 Months,36 Months and 60 Months) of two datasets were all above 0.80 except sensitivity of 60-month time point of validation set was 0.7662. AUCs of three predicted timepoints were 0.9562, 0.9273 and 0.9009 respectively for training set. Similarly, those numbers were 0.9645, 0.9329, and 0.8894 respectively for validation set. Calibration plot also showed that the nomogram model had a good calibration.ConclusionThe final nomogram model provided with both excellent accuracy and clinical availability and should be able to predict patients’ survival probability visually and accurately.


Author(s):  
Riccardo Casadei ◽  
Claudio Ricci ◽  
Carlo Ingaldi ◽  
Alessandro Cornacchia ◽  
Marina Migliori ◽  
...  

AbstractThe management of IPMNs is a challenging and controversial issue because the risk of malignancy is difficult to predict. The present study aimed to assess the clinical usefulness of two preoperative nomograms for predicting malignancy of IPMNs allowing their proper management. Retrospective study of patients affected by IPMNs. Two nomograms, regarding main (MD) and branch duct (BD) IPMN, respectively, were evaluated. Only patients who underwent pancreatic resection were collected to test the nomograms because a pathological diagnosis was available. The analysis included: 1-logistic regression analysis to calibrate the nomograms; 2-decision curve analysis (DCA) to test the nomograms concerning their clinical usefulness. 98 patients underwent pancreatic resection. The logistic regression showed that, increasing the score of both the MD-IPMN and BD-IPMN nomograms, significantly increases the probability of IPMN high grade or invasive carcinoma (P = 0.029 and P = 0.033, respectively). DCA of MD-IPMN nomogram showed that there were no net benefits with respect to surgical resection in all cases. DCA of BD-IPMN nomogram, showed a net benefit only for threshold probability between 40 and 60%. For these values, useless pancreatic resection should be avoided in 14.8%. The two nomograms allowed a reliable assessment of the malignancy rate. Their clinical usefulness is limited to BD-IPMN with threshold probability of malignancy of 40–60%, in which the patients can be selected better than the “treat all” strategy.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1440-1440
Author(s):  
Hua Wang ◽  
Bibo Fu ◽  
Guanjun Chen

Abstract Introduction: Heterogeneity exists in prognosis of Angioimmunoblastic T-cell lymphoma (AITL) patients. Thus, a personalized prognostic model is crucial for survival prediction for each AITL patient. Nomogram is a powerful mathematical tool to predict survival. In this study, we aimed to develop a prognostic nomogram for AITL based on data from a large clinical database and validate it in an independent external cohort. In addition, we compared the accuracy of the nomogram with previous prognostic models used in AITL including International Prognostic Index (IPI) and Prognostic Index of T-cell lymphoma (PIT) model. Methods: Totally, 1071 patients were retrieved from the Surveillance, Epidemiology, and End Results (SEER) database as the training cohort; 156 patients diagnosed from 2009-2021 in Sun Yat-Sen University Cancer Center or The First Affiliated Hospital of Guangzhou Medical University were recruited as the external validation cohort. 105 patients with IPI information in the training cohort were used to compare the nomogram and IPI. 156 patients in the external cohort were used to compare the nomogram and IPI or PIT. The Prognostic risk factors in the nomogram were identified by cox proportional hazards model. Concordance index (C-index) and calibration curves were used for internal and external validation. C-index and decision curve analysis (DCA) curves were used to compare the models. Results: Age, sex, systematic symptoms, Ann Arbor stage and chemotherapy were risk factors finally included to develop the nomogram. C-indexes of the nomogram were 0.676 and 0.652 in the training cohort and the validation cohort. Favorable agreement of nomogram-predicted and actual probability of overall survival (OS) was detected by calibration curves in both training and validation cohorts. In the cohort of 105 patients, C-indexes of the nomogram and IPI were 0.696 vs 0.616 (P<0.05); in the cohort of 156 patients, C-indexes were 0.652 vs 0.597 (P=0.08) of the nomogram and IPI while 0.652 vs 0.616 (P=0.176) of the nomogram and PIT. Decision curve analysis (DCA) showed superiority of the nomogram as compared with the IPI or the PIT model in both 105 and 156 patients' cohorts. A web calculator was published for convenient clinical application. Based on the prognostic scores calculated by the nomogram, three cut points were identified by X-tile program to establish a classification system that could significantly distinguish patients in four risk groups. Conclusion: We establish a nomogram for survival prediction of AITL, which may assist in treatment strategy making and survival consultation. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Suyu Wang ◽  
Yue Yu ◽  
Wenting Xu ◽  
Xin Lv ◽  
Yufeng Zhang ◽  
...  

Abstract Background The prognostic roles of three lymph node classifications, number of positive lymph nodes (NPLN), log odds of positive lymph nodes (LODDS), and lymph node ratio (LNR) in lung adenocarcinoma are unclear. We aim to find the classification with the strongest predictive power and combine it with the American Joint Committee on Cancer (AJCC) 8th TNM stage to establish an optimal prognostic nomogram. Methods 25,005 patients with T1-4N0–2M0 lung adenocarcinoma after surgery between 2004 to 2016 from the Surveillance, Epidemiology, and End Results database were included. The study cohort was divided into training cohort (13,551 patients) and external validation cohort (11,454 patients) according to different geographic region. Univariate and multivariate Cox regression analyses were performed on the training cohort to evaluate the predictive performance of NPLN (Model 1), LODDS (Model 2), LNR (Model 3) or LODDS+LNR (Model 4) respectively for cancer-specific survival and overall survival. Likelihood-ratio χ2 test, Akaike Information Criterion, Harrell concordance index, integrated discrimination improvement (IDI) and net reclassification improvement (NRI) were used to evaluate the predictive performance of the models. Nomograms were established according to the optimal models. They’re put into internal validation using bootstrapping technique and external validation using calibration curves. Nomograms were compared with AJCC 8th TNM stage using decision curve analysis. Results NPLN, LODDS and LNR were independent prognostic factors for cancer-specific survival and overall survival. LODDS+LNR (Model 4) demonstrated the highest Likelihood-ratio χ2 test, highest Harrell concordance index, and lowest Akaike Information Criterion, and IDI and NRI values suggested Model 4 had better prediction accuracy than other models. Internal and external validations showed that the nomograms combining TNM stage with LODDS+LNR were convincingly precise. Decision curve analysis suggested the nomograms performed better than AJCC 8th TNM stage in clinical practicability. Conclusions We constructed online nomograms for cancer-specific survival and overall survival of lung adenocarcinoma patients after surgery, which may facilitate doctors to provide highly individualized therapy.


2021 ◽  
Author(s):  
Yijun Wu ◽  
Hongzhi Liu ◽  
Jianxing Zeng ◽  
Yifan Chen ◽  
Guoxu Fang ◽  
...  

Abstract Background and Objectives Combined hepatocellular cholangiocarcinoma (cHCC) has a high incidence of early recurrence. The objective of this study is to construct a model predicting very early recurrence (VER)(ie, recurrence within 6 months after surgery) of cHCC. Methods 131 consecutive patients from Eastern Hepatobiliary Surgery Hospital served as a development cohort to construct a nomogram predicting VER by using multivariable logistic regression analysis. The model was internally and externally validated in an validation cohort of 90 patients from Mengchao Hepatobiliary Hospital using the C concordance statistic, calibration analysis and decision curve analysis (DCA). Results The VER nomogram contains microvascular invasion(MiVI), macrovascular invasion(MaVI) and CA19-9>25mAU/mL. The model shows good discrimination with C-indexes of 0.77 (95%CI: 0.69 - 0.85 ) and 0.76 (95%CI:0.66 - 0.86) in the development cohort and validation cohort respectively. Decision curve analysis demonstrated that the model are clinically useful and the calibration of our model was favorable. Our model stratified patients into two different risk groups, which exhibited significantly different VER. Conclusions Our model demonstrated favorable performance in predicting VER in cHCC patients.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yang Wu ◽  
Haofei Hu ◽  
Jinlin Cai ◽  
Runtian Chen ◽  
Xin Zuo ◽  
...  

AbstractIdentifying individuals at high risk for incident diabetes could help achieve targeted delivery of interventional programs. We aimed to develop a personalized diabetes prediction nomogram for the 3-year risk of diabetes among Chinese adults. This retrospective cohort study was among 32,312 participants without diabetes at baseline. All participants were randomly stratified into training cohort (n = 16,219) and validation cohort (n = 16,093). The least absolute shrinkage and selection operator model was used to construct a nomogram and draw a formula for diabetes probability. 500 bootstraps performed the receiver operating characteristic (ROC) curve and decision curve analysis resamples to assess the nomogram's determination and clinical use, respectively. 155 and 141 participants developed diabetes in the training and validation cohort, respectively. The area under curve (AUC) of the nomogram was 0.9125 (95% CI, 0.8887–0.9364) and 0.9030 (95% CI, 0.8747–0.9313) for the training and validation cohort, respectively. We used 12,545 Japanese participants for external validation, its AUC was 0.8488 (95% CI, 0.8126–0.8850). The internal and external validation showed our nomogram had excellent prediction performance. In conclusion, we developed and validated a personalized prediction nomogram for 3-year risk of incident diabetes among Chinese adults, identifying individuals at high risk of developing diabetes.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Ruohui Mo ◽  
Rong Shi ◽  
Yuhong Hu ◽  
Fan Hu

Objectives. This study is aimed at developing a risk nomogram of diabetic retinopathy (DR) in a Chinese population with type 2 diabetes mellitus (T2DM). Methods. A questionnaire survey, biochemical indicator examination, and physical examination were performed on 4170 T2DM patients, and the collected data were used to evaluate the DR risk in T2DM patients. By operating R software, firstly, the least absolute shrinkage and selection operator (LASSO) regression analysis was used to optimize variable selection by running cyclic coordinate descent with 10 times K cross-validation. Secondly, multivariable logistic regression analysis was applied to build a predicting model introducing the predictors selected from the LASSO regression analysis. The nomogram was developed based on the selected variables visually. Thirdly, calibration plot, receiver operating characteristic (ROC) curve, and decision curve analysis were used to validate the model, and further assessment was running by external validation. Results. Seven predictors were selected by LASSO from 19 variables, including age, course of disease, postprandial blood glucose (PBG), glycosylated haemoglobin A1c (HbA1c), uric creatinine (UCR), urinary microalbumin (UMA), and systolic blood pressure (SBP). The model built by these 7 predictors displayed medium prediction ability with the area under the ROC curve of 0.700 in the training set and 0.715 in the validation set. The decision curve analysis curve showed that the nomogram could be applied clinically if the risk threshold is between 21% and 57% and 21%-51% in external validation. Conclusion. Introducing age, course of disease, PBG, HbA1c, UCR, UMA, and SBP, the risk nomogram is useful for prediction of DR risk in T2DM individuals.


2020 ◽  
Vol 7 ◽  
Author(s):  
Bin Zhang ◽  
Qin Liu ◽  
Xiao Zhang ◽  
Shuyi Liu ◽  
Weiqi Chen ◽  
...  

Aim: Early detection of coronavirus disease 2019 (COVID-19) patients who are likely to develop worse outcomes is of great importance, which may help select patients at risk of rapid deterioration who should require high-level monitoring and more aggressive treatment. We aimed to develop and validate a nomogram for predicting 30-days poor outcome of patients with COVID-19.Methods: The prediction model was developed in a primary cohort consisting of 233 patients with laboratory-confirmed COVID-19, and data were collected from January 3 to March 20, 2020. We identified and integrated significant prognostic factors for 30-days poor outcome to construct a nomogram. The model was subjected to internal validation and to external validation with two separate cohorts of 110 and 118 cases, respectively. The performance of the nomogram was assessed with respect to its predictive accuracy, discriminative ability, and clinical usefulness.Results: In the primary cohort, the mean age of patients was 55.4 years and 129 (55.4%) were male. Prognostic factors contained in the clinical nomogram were age, lactic dehydrogenase, aspartate aminotransferase, prothrombin time, serum creatinine, serum sodium, fasting blood glucose, and D-dimer. The model was externally validated in two cohorts achieving an AUC of 0.946 and 0.878, sensitivity of 100 and 79%, and specificity of 76.5 and 83.8%, respectively. Although adding CT score to the clinical nomogram (clinical-CT nomogram) did not yield better predictive performance, decision curve analysis showed that the clinical-CT nomogram provided better clinical utility than the clinical nomogram.Conclusions: We established and validated a nomogram that can provide an individual prediction of 30-days poor outcome for COVID-19 patients. This practical prognostic model may help clinicians in decision making and reduce mortality.


Sign in / Sign up

Export Citation Format

Share Document